
PCPs and HDX - Lecture 5

December 6, 2016

Today I want to talk a little bit about PCPs, i.e. probabilistically checkable proofs. We’ve
already seen that the Hadamard code is locally testable with 3 queries. We have seen that the
constraint system containing the linearity tests is an expanding constraint system for this code.

1 Hadamard based PCPs

We will start by constructing an expanding constraint system for slightly more general codes.
Suppose you have variables v1, . . . , vn and some m linear equations over these variables, where
each equation is specified by a coefficient vector a ∈ {0, 1}n and a bit b such that the equation
is 〈a, v〉 = b. The set of all solutions to these equations is an affine subspace, W ⊂ {0, 1}n, and
let us consider the following code:

HW = {H(w)|w ∈W} ⊂ {0, 1}N ,

where N = 2n and H(w) is the Hadamard encoding of w ∈ {0, 1}n, i.e.,

H(w) = (〈w, x〉)x∈{0,1}n .

Is this code locally testable? The following is a suggestion for a test: given a string Z:

1. Perform a linearity test.

2. Choose a random linear combination of the m linear equations. Let a ∈ {0, 1}n and
b ∈ {0, 1} be the resulting equation. Select a random x ∈ {0, 1}N and accept iff Z(x) =
Z(x+ a) + b.

Let us first check the completeness of this test. LSuppose w ∈ W and let Z = H(w) be an
element of the code. Clearly Z passes the test in the first item. Moreover Z(a) =< w, a >= b
so it must also pass the second item test.

We can see that the set of strings Z that satisfy every constraint described by the test is
exactly our code. We now ask whether this set of local constraints (each constraint checks five
entries in the codeword Z) is expanding.

Let Z be some given word. Let δ = dist(Z,H), and let δ′ = dist(Z,HW ).
If δ 6= δ′ then the closest Hadamard codeword to Zis the Hadamard encoding of a word

w′ /∈W . In other words w′ fails to satisfy at least one equation. We analyze three cases:

• If δ = δ′ then the linearity test constraints already guarantee soundness: rej(Z) ≥ γBLR ·δ′.

• If δ 6= δ′ and δ > 1/8 again the linearity test constraints kick in: rej(Z) ≥ γBLR/8 ≥
γBLR/8 · δ′.

1



• If δ 6= δ′ and δ < 1/8: rej(Z) ≥ Pr[〈w′, a〉 6= b] ·Prx[Z(x)+Z(x+a) = 〈w′, a〉] ≥ 1/2 ·1/2 ≥
δ′/4.

All in all we see that rej(Z) ≥ const · dist(Z,HW ). We have proven,

Theorem 1.1. Every system of linear equations over n variables spanning the spaceW ⊂ {0, 1}n
gives rise to the code HW ⊂ {0, 1}2n that is locally testable with a constant number of queries.

What does this mean? It means that there is a proof system for checking whether a given
system of equations is satisfiable.
Prover: supply the Hadamard encoding of some solution w to the equations.
Verifier: run the above test.

If the proof causes the verifier to accept with high probability, say above 99%, it means that
the proof can be decoded into a valid element in W , i.e., a solution to all of the equations. If
however W = φ, then the verifier is guaranteed to reject with probability higher than 1%.

This scheme has two drawbacks: the first is that the Hadamard encoding has exponential
length. The second is that it only allows us to check solutions for systems of linear equations.
This second issue is particularly underwhelming since the verifier can check if W = φ without
need of any proof at all. However, we shall next see a PCP system for verifying NP hard systems
of equations.

2 Quadratic functions encoding

We will now see our third locally testable code, the QF code.
To encode a string v ∈ {0, 1}n in the QF code we first append 0, defining v0 = 1, and then

define u = v ⊗ v and finally let QF (v) = H(u). I.e.

v ⇒ (v0 = 1, v1, . . . , vn)⇒ u = v ⊗ v ⇒ H(u)

Let
QF = {H(u) | u = v ⊗ v for some v ∈ {0, 1}n+1 where v0 = 1}.

This code is called the “quadratic functions” code because the encoding of a string v has a
coordinate M = (mij)ij for every possible quadratic function

∑
ij mijvivj of v. Here is a siz

query test for deciding if a given string Z is in this code.

• Perform a linearity test on Z

• Perform a tensor test:

– Choose a, b ∈ {0, 1}n+1 such that a0 = 1 = b0. Define A,B ∈ {0, 1}(n+1)2 to be
matrices that are zero except for the top row being a in A and b in B.

– Let C = a⊗ b, i.e. Cij = aibj .

– Accept iff Z(C) = Z(A)Z(B).

Theorem 2.1. The QF code is locally testable with 6 queries and constant soundness. In other
words, the above test is an expanding system of 6-ary constraints for this code, with constant
expansion.

2



Proof. Let δ = dist(Z,QF ). If the closest Hadamard encoding to Z is also the closest QF
encoding, then expansion is promised through the linearity testing constraints, because

rej(Z) ≥ rejBLR(Z) ≥ γBLR · dist(Z,LIN) = γBLR · dist(Z,QF )

So assume there is a string H(u) that is closest to Z and yet H(u) 6∈ QF . Think of u as an
(n+ 1) by (n+ 1) matrix and let v be the top row of u. Let Rij = uij − vivj . If u 6= v ⊗ v then
R 6≡ 0. It is easy to check that

Pr
a,b

[Z(C) 6= Z(A)Z(B)] = Pr
a,b

[
∑
ij

Rijaibj 6= 0] > 1/4

Therefore, in this case, the tensor test rejects with probability at least 1
4 ≥

1
4 · dist(Z,QF ).

3 A PCP for NP

3.1 A PCP for checking quadratic equations

Consider as before the system of n variables, and suppose we have m equations over these
variables, however this time the equations will be quadratic. For example an equation can be:
v1 · v5 + v6 · v2 = 1.

Let us introduce new variables uij that are supposed to encode products of the original
variables, uij = vivj .
Every quadratic equation in the old variables can be written as a linear equation in the new
variables when we also add the convention v0 = 1 (this is called the linearized equation). Let
W be the space of all solutions u to the linearized equations.

QFW = {H(u) | u ∈W and u = v ⊗ v for some v where v0 = 1}

Theorem 3.1. For every system of quadratic equations, the code QFW defined above is locally
testable with a constant number of queries.

The proof of this theorem is immediate from the above theorems. We run three tests

• Perform a linearity test

• Perform a random equation test

• Perform a tensor test. Accept only if all tests accepted

3.2 quadratic equations capture all of NP

Let C be a circuit, with input variables v1, . . . , vn. It is easy to encode the computation of the
circuit as a system of quadratic equations. Assume without loss of generality that each gate in
the circuit has fan in two. Introduce one new variable per gate. For each ∧ gate we add the
equation a = bc where a is the gate variable and b, c are the input variables to the gate. For
each ∨ gate we add the equation a = b+ c− bc. One can check that every assignment to all of
the variables that satisfies every single equation, encodes a valid computation of the circuit.

Together with the above theorem, we get our first PCP theorem:

Theorem 3.2. NP ⊆ PCP [poly, 1]

3



Notation: The notation on the right PCP [r, q] refers to a PCP verification system where
the verifier uses O(r) random bits and makes O(q) queries to the proof. The theorem says that
every NP statement can be checked by a probabilistic verifier that uses a polynomial number of
random bits and makes constant number of queries to the proof.

Proof. Every NP complete language can be reduced to the problem of circuit satisfiability. So
to prove the PCP theorem it is enough to prove it for circuit satisfiability. A verifier for circuit
satisfiability will expect the prover to write down the QF encoding of a string that describes
the circuit computation. Using the theorem above, that we have yet to prove, this encoding
is locally testable. The verifier will run the local test. If the circuit is satisfiable then there is
clearly a proof that will satisfy the verifier with probability one. If the circuit is unsatisfiable,
the QF code that we have defined above is empty. Therefore any given proof is by definition
very far from the code and the verifier must reject with good probability.

4


	Hadamard based PCPs
	Quadratic functions encoding
	A PCP for NP
	A PCP for checking quadratic equations
	quadratic equations capture all of NP


