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1 Edge Expansion of Graphs

Let G = (V,E). Let (S, V \ S) be a cut. We are interested in the number edges in this cut.
More precisely, we are interested in bounding the number of edges in this cut as a function of
α = |S|/|V |. Clearly, if the graph has no multiple edges, there are at most |S|·|V \S| = α(1−α)n2

edges in the cut. This is indeed the number of edges in the complete graph. As a fraction of the
number of edges, it is 2α(1− α).

For a fixed G, and a set S of size α|V | we are interested in the size of a typical E(S, V \S). We
think of choosing S at random by placing each vertex of V in S with probability α independently
(this simulates going over all (α, 1−α) cuts, but easier to analyze). For an edge uv we have the
following:

Pr
S

[uv crosses cut] = 2α(1− α).

This implies the following,

ES [|E(S, V \ S)|] =
∑
uv∈E

Pr
S

[uv crosses cut] =
nd

2
· 2α(1− α) = ndα(1− α),

or in other words, 2α(1 − α) fraction of the edges. Note that this just like in the case of the
complete graph.

Definition 1.1. G is ε−typical with respect to S if,

|E(S, V \ S)− α(1− α)nd| ≤ ε · ndα(1− α).

In other words, if we denote |E(S,V \S)|
nd|S||V \S| by Φ(S) then, we have |Φ(S)− 1| ≤ ε, i.e., there is a

typical fraction of edges crossing this cut.
Any graph is typical with respect to most cuts (follows from a concentration bound, showing

that for most graphs the number of edges crossing between S and V \S is near its expectation),
but not necessarily all. Is there a graph that is typical with respect to all cuts? The answer
is yes: the complete graph. By counting the number of edges crossing a cut we get very exact
information about the size of the two sides of the cut. Next we ask: is there such a graph that
is sparse, i.e. with O(n) edges and not Ω(n2)? Such a graph would behave like the complete
graph, without needing so many edges. Some candidates are:

1. A random graph.

2. An expander.
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2 Random Graphs

What is a random graph on n vertices? One model is to choose a graph out of all possible
graphs over n vertices. A much more useful way to describe this is the G(n, 12) model, or more
generally, the Erdos-Renyi G(n, p) model, where 0 < p < 1 is a parameter. In this model, a
graph is chosen by including each edge independently with probability p. In this model the
average degree is pn.

A slightly different model is the G(n, d) model, in which we pick d matchings on n vertices at
random, and include all of them in the edge set. In this model the degree (counting multiplicity)
of each vertex is exactly d.

For d = pn these models are similar, but not identical. The G(n, p) model is easier to
analyze because of the independence of the edges. Let us fix d and set p = d/n and consider an
increasing sequence of n’s. In G ∼ G(n, p) we are likely to have isolated vertices, but not so in
G ∼ G(n, d). Indeed, the following is true:

Lemma 2.1 (A random graph G ∼ G(n, d) is an expander). For all ε, there exists a constant d
such that for all large enough n and G sampled from G(n, d) we have that all the cuts in G are
ε−typical.

We will prove an easier claim, pertaining to G(n, p):

Lemma 2.2 (A random graph in G ∼ G(n, p = d/n) is a “large-set-expander”). For all ε, there
exists a constant d such that for all large enough n and G sampled from G(n, p), where p = d/n
we have that all the large cuts in G are ε−typical (by large we mean that |S| ∈

(
n
4 ,

3n
4

)
).

Proof. We will use an union bound argument. For all large S let AS =“S is atypical”. We denote
PS = Pr(AS) = exp(−εmp(1− p)), where m = |S| · |V \ S|. We note that,

Pr
[
|
∑

xi −mp| > εmp
]
≤ 2 · exp

(
−ε

2mp

3

)
,

where xi = xuv = did uv get into G. Next, we have that E[xi] = p = d/n. Since m = #uv =
α(1−α)n2, we have that mp = α(1−α)nd. Thus if d is large enough with respect to ε we have:

ε2mp

3
>
nd

16
ε2 > n.

So, we have:
Pr [∃S atypical] ≤

∑
S is large

Pr [AS ] ≤ 2n · exp(−n) ≈ 0.

This implies,
Pr [@S atypical] ≈ 1.

3 Expander Graphs

There are explicit constructions of such random-looking graphs with bounded degree. For ex-
ample, there are several constructions based on algebraic / number-theoretic theorems (LPS,
Margulis, ...)

For a long time it was not known how to construct an explicit graph that is an expander,
through elementary methods. The zigzag construction, due to Reingold, Vadhan, and Wigder-
son, gave a way to construct an expander explicitly from elementary methods.
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Below is a description based on Lecture 16 of Spielman’s Spectral Graph Theory course.
Let G0 be an expander on a constant number of vertices. This graph can be obtained by

exhaustive search. We construct Gi+1 from Gi through the following procedure:

1. Take the line graph of Gi (each vertex becomes a clique).

2. Replace the cliques by small expanders.

3. Square (twice).

The above procedure is repeated n times in order to obtain some Gn = G. For an analysis
of the above construction see Lecture 16 of Spielman’s Spectral Graph Theory course.

4 High Dimensional Expanders

We now extend our discussion of expanders to higher dimensions.
Let X(0) = V be the set of vertices. Let X(1) = E be the set of edges. We continue with

X(2) a set of (unordered) triples of vertices, sometimes called triangles. We keep going and have
X(d) be a set of so-called d-faces which are subsets of vertices of cardinality d + 1. We denote
by

X = X(0), X(1), . . . , X(d)

X is a simplicial complex if whenever s is a face in X then every s′ ⊂ s is also a face in X.
We introduce the notion of a link of a vertex v as follows:

Xv = {S \ {v} | v ∈ S ∈ X},

This is analogous to the neighborhood of a vertex in a graph, and is itself a simplicial complex
of one dimension less.

Actually, it makes sense to define the link of a face, not just of a vertex. The link of a face
s ∈ X is

Xs = {S \ s | s ⊂ S ∈ X},

Recall that a graph is a λ-(spectral)-expander if λ(G) ≤ λ. We extend this definition
recursively to a simplicial complex, as follows,

Definition 4.1. A λ−skeleton expander is when:

1. The graph G = (V = X(0), E = X(1)) is an λ−expander.

2. ∀v, Xv is a λ−expander.

Our first example of a high dimensional expander is the complete complex. Let us define it
first:

Definition 4.2. The complete complex Kn(2) on n vertices is X(0) = [n], X(1) =
(
[n]
2

)
=

{{ij}}i<j, and X(2) =
(
[n]
3

)
.

Claim 4.3. Kn(2) is a λ−expander with λ = O
(

1
n−1

)
.

Proof. It is easy to see that each link is a clique on (n− 1) vertices.
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We would like to now explore the following question: Is a random 2-dimensional complex
an expander as defined above? We can answer this question in the Linial-Meshulam model:
we insert each triangle (i.e., a 2-face) with probability p. In this model, we note that random
2-dimensional complex is an expander only when p ≥ 1/n (actually when p ≥ logn

n ). Note that
these random graphs are neither bounded degree nor sparse.

A sparse random 2-dimensional complex is not a high dimensional expander, as we will see
in the exercise.

There exists a construction (due to Lubotzky, Samuels, and Vishne), (based on deep number
theory and representation theory), of high dimensional graphs that are (sparse) bounded degree!
More precisely, ∀λ∃ such that for an infinite sequence of ns, there is a complex X(0), X(1), X(2)
such that |X(2)| = O(|X(1)|).

We conclude the lecture with the following open question:

Open Question: Is there an (elementary) construction of expanders in high dimension that
is analogous to the zigzag construction for dimension 1?
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