PCPs and HDX - Lecture 7

Scriber: Karthik Srikanta

December 27, 2016

1 Edge Expansion of Graphs

Let G = (V,E). Let (S,V \ S) be a cut. We are interested in the number edges in this cut.
More precisely, we are interested in bounding the number of edges in this cut as a function of
a = |S|/|V|. Clearly, if the graph has no multiple edges, there are at most |S|-|V\ S| = a(1—a)n?
edges in the cut. This is indeed the number of edges in the complete graph. As a fraction of the
number of edges, it is 2a(1 — a).

For a fixed G, and a set S of size o|V| we are interested in the size of a typical E(S,V\S). We
think of choosing S at random by placing each vertex of V' in S with probability e independently
(this simulates going over all («, 1 — a) cuts, but easier to analyze). For an edge uv we have the
following:

P;r[uv crosses cut] = 2a(1 — ).

This implies the following,

ES[|E(S,V\9)|] = Z %r[uv crosses cut] = %d 2a(1 — a) = nda(l — ),
uwek

or in other words, 2a(1 — «) fraction of the edges. Note that this just like in the case of the
complete graph.

Definition 1.1. G is e—typical with respect to S if,
|E(S,V\S)—a(l—a)nd <e-nda(l — a).

In other words, if we denote % by ®(S) then, we have |®(S) — 1| <e¢, i.e., there is a
typical fraction of edges crossing this cut.

Any graph is typical with respect to most cuts (follows from a concentration bound, showing
that for most graphs the number of edges crossing between S and V'\ S is near its expectation),
but not necessarily all. Is there a graph that is typical with respect to all cuts? The answer
is yes: the complete graph. By counting the number of edges crossing a cut we get very exact
information about the size of the two sides of the cut. Next we ask: is there such a graph that
is sparse, i.e. with O(n) edges and not Q(n?)? Such a graph would behave like the complete
graph, without needing so many edges. Some candidates are:

1. A random graph.

2. An expander.



2 Random Graphs

What is a random graph on n vertices? One model is to choose a graph out of all possible
graphs over n vertices. A much more useful way to describe this is the G(n, %) model, or more
generally, the Erdos-Renyi G(n,p) model, where 0 < p < 1 is a parameter. In this model, a
graph is chosen by including each edge independently with probability p. In this model the
average degree is pn.

A slightly different model is the G(n, d) model, in which we pick d matchings on n vertices at
random, and include all of them in the edge set. In this model the degree (counting multiplicity)
of each vertex is exactly d.

For d = pn these models are similar, but not identical. The G(n,p) model is easier to
analyze because of the independence of the edges. Let us fix d and set p = d/n and consider an
increasing sequence of n’s. In G ~ G(n,p) we are likely to have isolated vertices, but not so in
G ~ G(n,d). Indeed, the following is true:

Lemma 2.1 (A random graph G ~ G(n,d) is an expander). For all €, there exists a constant d
such that for all large enough n and G sampled from G(n,d) we have that all the cuts in G are
e—typical.

We will prove an easier claim, pertaining to G(n,p):

Lemma 2.2 (A random graph in G ~ G(n,p = d/n) is a “large-set-expander”). For all ¢, there
exists a constant d such that for all large enough n and G sampled from G(n,p), where p=d/n
we have that all the large cuts in G are e—typical (by large we mean that |S| € (%,3%)).

Proof. We will use an union bound argument. For all large S let Ag =S is atypical”. We denote
Ps = Pr(Ag) = exp(—emp(1 — p)), where m = |S| - |V \ S|. We note that,

2
Pr [[Za:z — mp| > 6mp] < 2-exp <—6 gw> ,

where z; = x,, = did uv get into G. Next, we have that E[z;] = p = d/n. Since m = #uv =
a(1 — a)n?, we have that mp = a(1 — a)nd. Thus if d is large enough with respect to ¢ we have:

2

e‘mp _ nd 4
>—e2>n.

3 ~16° "

So, we have:
Pr [3S atypical] < Z Pr[Ag] <2"-exp(—n) =~ 0.
S is large
This implies,
Pr[AS atypical] ~ 1.

3 Expander Graphs

There are explicit constructions of such random-looking graphs with bounded degree. For ex-
ample, there are several constructions based on algebraic / number-theoretic theorems (LPS,
Margulis, ...)

For a long time it was not known how to construct an explicit graph that is an expander,
through elementary methods. The zigzag construction, due to Reingold, Vadhan, and Wigder-
son, gave a way to construct an expander explicitly from elementary methods.



Below is a description based on Lecture 16 of Spielman’s Spectral Graph Theory course.
Let Gy be an expander on a constant number of vertices. This graph can be obtained by
exhaustive search. We construct G;41 from G; through the following procedure:

1. Take the line graph of G; (each vertex becomes a clique).
2. Replace the cliques by small expanders.
3. Square (twice).

The above procedure is repeated n times in order to obtain some G, = G. For an analysis
of the above construction see Lecture 16 of Spielman’s Spectral Graph Theory course.

4 High Dimensional Expanders

We now extend our discussion of expanders to higher dimensions.

Let X (0) = V be the set of vertices. Let X (1) = E be the set of edges. We continue with
X (2) a set of (unordered) triples of vertices, sometimes called triangles. We keep going and have
X(d) be a set of so-called d-faces which are subsets of vertices of cardinality d + 1. We denote
by

X =X(0),X(1),...,X(ad)

X is a simplicial complex if whenever s is a face in X then every s’ C s is also a face in X.

We introduce the notion of a link of a vertex v as follows:

Xy ={S\{v}|veSeX}

This is analogous to the neighborhood of a vertex in a graph, and is itself a simplicial complex
of one dimension less.
Actually, it makes sense to define the link of a face, not just of a vertex. The link of a face
se X is
Xs={S\s|scCSeX}

Recall that a graph is a A-(spectral)-expander if A\(G) < A. We extend this definition
recursively to a simplicial complex, as follows,

Definition 4.1. A \—skeleton expander is when:
1. The graph G = (V = X(0), E = X(1)) is an A—expander.
2. Yv, X, is a A—expander.

Our first example of a high dimensional expander is the complete complex. Let us define it
first:

Definition 4.2. The complete compler K,(2) on n vertices is X(0) = [n], X(1) = ([n]) _
{{ij}}icj, and X(2) = ([g]y

Claim 4.3. K, (2) is a A—expander with A\ = O (ﬁ)

Proof. 1t is easy to see that each link is a clique on (n — 1) vertices. O



We would like to now explore the following question: Is a random 2-dimensional complex
an expander as defined above? We can answer this question in the Linial-Meshulam model:
we insert each triangle (i.e., a 2-face) with probability p. In this model, we note that random
2-dimensional complex is an expander only when p > 1/n (actually when p > lo%) Note that
these random graphs are neither bounded degree nor sparse.

A sparse random 2-dimensional complex is not a high dimensional expander, as we will see
in the exercise.

There exists a construction (due to Lubotzky, Samuels, and Vishne), (based on deep number
theory and representation theory), of high dimensional graphs that are (sparse) bounded degree!
More precisely, VA3 such that for an infinite sequence of ns, there is a complex X (0), X (1), X (2)
such that | X (2)| = O(] X (1))).

We conclude the lecture with the following open question:

Open Question: Is there an (elementary) construction of expanders in high dimension that
is analogous to the zigzag construction for dimension 1?7
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