
PCPs and HDX - Lecture 8

Scriber: Renen Perlman

January 3, 2017

In this lecture we begin to prove the PCP theorem. We start with reviewing the formulation of
the theorem, and giving a high-level approach of how we should understand it. Then, we give the
outline of the proof, and show the first of its two main parts, the gap amplification. The second one,
alphabet reduction, will be described in the following lecture.

1 The High-Level Approach

In previous lectures we’ve described the PCP theorem as follows:

Theorem 1.1. There exists some fixed ε0 > 0 and a polynomial time algorithm that on input a
3COL instance G = (VG, EG), outputs a graph H = (VH , EH) such that:

• Completeness: If G is 3-colorable, then H is 3-colorable as well.

• Special Soundness: If G is not 3-colorable, then for every coloring of H, at least ε0 fraction of
the edges of H are violated.

We reformulate the theorem in the spirit of the course: Recall the following definitions - Let
H = (VH , EH) be some graph, and let c : VH → {1, 2, 3} be some coloring of its vertices. We define
the rejection probability of c in the graph H as

rejH(c) = Pr
(u,v)∈E

[c(u) = c(v)] .

Similarly, we define the rejection probability of H as

rej(H) = min
c:VH→{1,2,3}

rejH(c) .

Note that if a graph G = (VG, EG) is not 3-colorable then we can lower bound its rejection
probability by rej(G) ≥ 1/m, where m = |EG|. Therefore, we can reformulate the properties of the
transformation from G to H as follows:

• If rej(G) = 0, then rej(H) = 0.

• If rej(G) ≥ 1/m, then rej(H) ≥ ε0.

Recall that we’ve defined the expansion of a graph by:

γ(H) = min
c:VH→{1,2,3}
c/∈SAT(H)

rejH(c)

dist(c,SAT(H))
.

1

A stronger property that we could have required from H to satisfy is that γ(H) ≥ γ0. This would
imply the previous formulation: if G is not 3-colorable, then SAT(H) = φ, so for every coloring
c : VH → {1, 2, 3} we would have rejH(c) ≥ γ0 · dist(c,SAT(H)) = γ0 · 1, and so rej(H) ≥ γ0.

It is very likely that with small modifications the current proof techniques give the stronger
property, however, this has not been proved. This is mainly from a “historical reason”, since the
terminology of expansion of a constraint graph was introduced after the PCP theorem was proved,
and this stronger property is not necessary for the proof.

Remark 1.1. The conditions

{
If rej(G) = 0, then rej(H) = 0

γ(H) ≥ γ0
could be strictly stronger than the

original formulation of Theorem 1.1, since we require that γ(H) ≥ γ0, even if G is 3-colorable. It
could be that rej(H) = 0, though γ(H) = o(1).

2 Outline of the Proof

The transformation Gy H is done by repeating an iterative step several times:

G =: G0 y G1 y . . .y Gk =: H

The iterative step is such that rej(Gi+1) ≥ 2 · rej(Gi) as long as rej(Gi) < ε0, and if rej(Gi) = 0,
then rej(Gi+1) = 0. Note that if G is not 3-colorable, then rej(G) ≥ 1/m = Ω(1/n2), so we need
k = O(log n) number of iterations.

The Iterative Step Gi y Gi+1

The iterative step consists of the following 3 basic steps:

Step 1 - Preprocessing: We construct Gi y G′i such that G′i is d-regular for constant d(=4).
This transformation is similar to the one shown in Homework 1, but instead of replacing each vertex
v ∈ V by a cycle of length dv (dv is the degree of v), we replace it by a 3-regular expander graph on
dv vertices. This guarantees that to rej(G′i) ≥ Ω(1) · rej(Gi). Note that from this step on, Gi is a
general constraint graph, rather than a 3COL instance (since some of the constraints are = and
some are 6=).

Next, we construct G′i y G′′i by adding more edges to G′′i in order to make it an edge expander
graph, and put trivial constraints on those edges, i.e. constraints that always accept. This reduces
the rejection probability of G′′i by a constant factor. Note that in both transformations, if rej(Gi) = 0,
then rej(G′i) = rej(G′′i) = 0. In all we let

Prep(Gi) := G′′i .

Step 2 - Gap Amplification: We construct Gi y Balls(Gi) =: G′i, where Balls is some polynomial
time algorithm, which we describe in the next section. The transformation is such that rej(G′i) ≥
Ω(t) · rej(Gi), as long as rej(Gi) < O(1/t), for some parameter t. We choose t to be large enough to
“cover” for the decrease in the rejection probability of the other steps, so that after the third step,
the rejection probability of Gi+1 would be rej(Gi+1) ≥ 2 · rej(Gi) (as long as rej(Gi) < ε0), and if
rej(Gi) = 0, then rej(Gi+1) = 0.

The main drawback of this step is that it increases the alphabet of the constraint system.

Specifically, |Σ(G′i)| = |Σ(Gi)|O(dt) = 3O(dt), so t has to be very small for the alphabet to remain

2

under control.

Step 3 - Alphabet Reduction: We construct Gi y Σ−Reduce(Gi) =: G′i such that |Σ(G′i)| =
O(1)(= 3). This step decreases the rejection probability by a constant factor, and preserves the
property that rej(Gi) = 0. Finally, we set Gi+1 := G′i.

We see that we have to set large enough t = O(1) such that rej((Σ−Reduce ◦Balls ◦Prep)(Gi)) ≥
2rej(Gi). We remark that we have to construct Gi+1 in such a way that

∣∣VGi+1

∣∣ ≤ O(1) · |VGi |.
This ensures that |VH | = |VGk

| = 2O(k) · |VG0 | = poly(n). Letting the size of the graph to increase
by a larger factor in each iteration would lead to super polynomial running time for the whole
transformation.

3 Gap Amplification Step

We now turn to describe the gap amplification step, moving from G to Balls(G). In this step we
assume that the graph G = (V,E) is a d-regular expander.

3.1 Intuition from error reduction

To develop some intuition, let us consider the following natural error reduction transformation for a
constraint graph verifier.

Recall that a constraint system can be viewed as a verifier that is trying to verify whether
the given assignment satisfies the constraints. The verifier chooses a random constraint, reads the
the values of the variables from the proof, and accepts if and only if the constraint is satisfied. A
satisfying assignment will always be accepted by the verifier. However, and unsatisfying assignment
Sometimes causes the verifier to falsely accept. The soundness error is exactly the fraction of
constraints that cause the verifier to say yes when it should say no.

What is an easy way to decrease the soundness error? Repeating the verifier multiple times will
do the trick. Think of a new verifier chooses t constraints independently at random. A satisfying
assignment is still accepted with probability 1. An assignment that caused a soundness error of α,
now causes a soundness error of αt. Indeed, let E be the total set of constraints, and let F ⊂ E be
the set of constraints that are violated by the given assignment. Denote 1 − α = ε = |F |

|E| . If the

original rejection probability was ε = 1− α, then now it is 1− (1− ε)t ≈ tε, a t-fold increase.
Error reduction can be made ”randomness efficient” by selecting the t constraints not completely

independently, but rather using an efficient sampler. In particular, it turns out, that the t constraints
can be selected as the edges on a length t random walk in expander graph. This is not hard to see,
and is exactly like one proves error reduction for randomized algorithms with one-sided error.

The main issue now is moving from a verifier that reads ≈ t proof locations back to a coloring
problem, in which each constraint reads only a constant number of bits. We can try to recurse:
use a PCP to encode the value of each t-tuple of vertices. Since we are now encoding only a small
number of bits, we can afford to use very inefficient PCPs such as the quadratic functions PCP.
Now we reach the crux of the problem: agreement. We must ensure that the encodings of different
local views agree with each other. We must not allow different paths that hit the same vertex to
assign it different colors.

3

It turns out that looking at paths does not work1, but looking at balls does. In the proof we
essentially show that if a typical pair of balls agree on their intersection then they must be globally
consistent with some underlying coloring.

3.2 The balls construction

For every vertex v ∈ V , we define the ball of radius t centered at v by:

B(v, t) = {u ∈ V | distG(v, u) ≤ t} .

Note that since G is d regular, then:

|B(v, t)| ≤ 1 + d+ d · (d− 1) + d · (d− 1)2 + . . .+ d · (d− 1)t−1 =: Dt = O(dt) .

We define Balls(G) := G′ = (V,E′, C ′). The vertex set is the same as in G. We set Σ′ = ΣDt , and
we think of an assignment for the vertices of G′ as a collection of local ball-colorings av : Bv → Σ.
Even before specifying which pairs of vertices have a constraint between them in G′, we can already
describe the constraints:

Let v, v′ ∈ V be two vertices, and let av, av′ be their two assignments. av, av′ satisfy the
constraint if and only if:

1. Agreement: For every common vertex u ∈ B(v, t)∩B(v′, t), we require that the two assignments
agree on u, namely av(u) = av′(u). And,

2. Old constraints: For any pair (u, u′) ∈ E such that u, u′ ∈ B(v, t) ∪ B(v′, t), we require the
assignments for u and u′ to satisfy the constraints on (u, u′) (those assignments are the same,
both under av and av′ , by the previous item).

We still have to define the distribution over pairs v, v′ for our new constraint graph. Already we
can see that this definition of the constraints guarantees completeness: a satisfying assignment for
G easily translates to a satisfying assignment for G′, no matter what distribution on pairs of v, v′

we choose.
For soundness however, the choice of distribution over v, v′ is important. We need to ensure that

the intersection of two balls wouldn’t be too small, nor too large. Roughly speaking, if Bv and Bv′

have small intersection, then an assignment could easily satisfy only constraints in the intersection,
while violating many edges outside of it. If the intersection is too large, then intuitively the vertices
v, v′ are too correlated so their assignments may be tailored to the constraints in them without
caring about other constraints involving the same vertices.

The constraints involving a vertex v ∈ V ′, are described through a lazy-random-walk distribution
LRW (v, p = 1/t) defined below. We connect v to v′ ← LRW (v, p = 1/t) the endpoint of this
random walk with weight proportional to its probability of occuring.
LRW (v, p) :

1. Set v′ ← v.

2. Toss a p-biased coin, having probability p to output 1.

(a) If we get 0, output the vertex v′.

(b) Otherwise, choose uniformly at random v′′ a neighbor of v′. Set v′ ← v′′, and go to
step 2.

1To be precise: I do not know that it works nor that it does not work. It would be very nice to resolve this question.

4

Two (unimportant) technicalities arise. First, our definition gives a weighted constraint graph
and not an unweighted one. This can be easily corrected by duplicating constraints, so we can safely
ignore this point. Second, the random walk may, in theory, never halt. We can change the distribution
to halt after 100·t steps. This has a negligible effect on the weights so we can safely ignore this as well.

We sketch an analysis of the soundness of this construction. In what follows, we refer to an
assignment for the original constraint graph, G, as a coloring to distinguish it from an assignment
to the balls. Let us first consider a simplified case, where the assignment to the balls, i.e. all of
the local functions {av : Bv → Σ}v, come from restricting a single global coloring c : V → {1, 2, 3},
i.e. av = c|Bv . Namely, set av(u) := c(u) for every u ∈ B(v, t). In this case it is easy to show that
the gap gets amplified. Indeed, a uniformly random ball in this construction, contains a uniformly
random path of length t in the graph G. We have seen in the earlier section about error reduction
that approximately t · ε fraction of paths must see violated constraints. This implies that the new
rejection probability is at least t times what it was before.

The general case in the collection of local assignments is not guaranteed to come from one global
coloring. here, implicitly, we need to prove agreement expansion: namely, that the fact that many
of the agreement constraints are satisfied imply that many of the local assignments agree with some
global coloring. We define this global coloring by a plurality of vote, and then proceed in two steps

• Prove agreement: many of the local assignments must agree with the global coloring that we
defined through majority

• Imitate the error reduction: show that the gap increased t-fold using similar arguments to
the case of the error reduction. This is more tricky because it needs to be coupled with the
previous item.

5

	The High-Level Approach
	Outline of the Proof
	Gap Amplification Step
	Intuition from error reduction
	The balls construction

