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In this lecture we will see a recent work by Amey Bhangale, Irit Dinur and I that was
presented in ITCS2017 [BDN17], it is called cube vs. cube low degree test, and can be found
here. We begin with some background and reminders from the previous lessons.

1 Cube vs. Cube Low Degree Test

In low degree testing, we are given a function f : Fm → F, and we want to find if it is a degree
d polynomial by querying it only on a few points.

1.1 Rubinfeld and Sudan’s low degree test

In lesson 4, we have seen Rubinfeld and Sudan’s low degree test and theorem [RS96], the test

1. Choose random x, h ∈ Fm.

2. Compute via interpolation the degree d polynomial for which p(t) = f(x+th) for t ∈ [d+1],
accept if p(0) = f(0).

Theorem 1.1. If the test passes with probability 1− δ for δ < 1
2(d+2)2

, then there exist a degree
d polynomial that is 1− 2δ close to f .

1.2 Low Soundness

In the previous lesson talked about the low acceptance regime, i.e. we want a low degree theorem
that holds even when the test acceptance probability is very small, δ > 0, and not only when it is
1−δ. There have been previous works on low soundness low degree tests, [RS97],[AS97],[MR08],

reducing the threshold acceptance probability δ to O
(

1

|F|
1
8

)
. In our work, we reduce this value

further to O
(

1√
|F|

)
(ignoring dependencies on m, d).

In order get low soundness low degree test with a few queries we need to query the function
on more than a single point on each query, which brings us to the setting of the previous lesson.

Agreement Test Recall the previous lesson agreement test, we had a set S = {S ⊂ U ||S| =
k}, and an assignment over S was a = {aS}S∈S , when aS : S → Σk. An agreement test on a
with respect to the distribution D is:

1. Choose S1, S2 ∼ D.

2. Accept if ∀u ∈ S1 ∩ S2, aS1(u) = aS2(u).
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The agreement of a is defined as the test success probability, i.e.

agreeD(a) = Pr
S1,S2∼D

[∀u ∈ S1 ∩ S2, aS1(u) = aS2(u)].

Goal: find D such that agreeD(a) > δ =⇒ ∃g : U → Σ s.t PrS∈S [aS = g|S ] ≥ δ′.

Cube vs cube agreement test The cube vs. cube test is an agreement test in a very similar
setting,

• U = Fm, k = |F|3.

• Instead of using the set S defined above, we use C ⊂ S, which is defined by

C = {C ⊂ Fm||C| = k,C is an affine subspace}.

• The assignment a = {aC}C∈C satisfies: for every C, aC : C → F is a degree d polynomial
(recall in SAT we allowed only satisfying assignments, here we do the same).

• The distribution D that we analyze is D1 from the previous lesson - we pick two random
cubes C1, C2 ∈ C that intersects on a point x ∈ Fm.

Theorem 1.2 (Cube vs. cube low degree theorem). There exist constants c1, c2, such that
if agreeD(a) > c1d4√

|F|
, then there is a degree d polynomial g, such that PrC∈C [aC = g|C ] ≥

c2 · agreeD(a).

2 Proof Sketch

In the proof we take an assignment a = {aC}C∈C such that ε = agreeD(a) ≥ c1d4√
|F|
, and find a

low degree polynomial g : Fm → F that satisfies the theorem requirements.
The proof has three parts, in the first we look for candidate functions for g, in the second

we pick one such function, and in the third show that it is close to a degree d polynomial.

2.1 Local structure

We are looking for a function g : Fm → F that agrees with many of the assignments aC for
cubes c ∈ C. A very natural approach is to pick the most frequent value, i.e for every x ∈ Fm,
to look on all C ∈ C that contains x and take the most frequent aC(x). This approach is not
going to work, see the examples bellow.

Example Let P1 6= P2 : Fm → F be two different degree d polynomials, and let a = {aC}C∈C
be the assignment such that for half of the cubes, aC = P1|C and for the second half, aC is
a restriction of P2. This a has agreement ≥ 1

2 (because if C1, C2 are a restriction of the same
polynomial the test will pass). a also has an agreement with a global function, for half of the
cubes C ∈ C, aC = P1|C . In this section we want to find the function P1.

How do we find P1? obviously, taking the most frequent value is not going to work, as it
equals P1 on half of the points and P2 on the other half. If someone tells us which cubes are a
restriction of P1 and which of P2 we could find P1 by taking the most frequent value, but we
don’t know which entries belong to which polynomial.

We use an idea that was used in direct product testing, which is to look on some x, and then
choose only the cubes C such that x ∈ C and aC(x) = σ = P1(x). For almost all x ∈ Fm, all
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these cubes satisfies aC(x) = P1(x). Taking the most frequent value among these cubes gives us
P1.

More explicitly, we define fx : Fm → F as follows: for every y ∈ Fm, fx(y) is the most
frequent aC(y) among all cubes such that,

1. x, y ∈ C.

2. aC(x) = σ = P1(x).

Since the cubes C ∈ C are dimension 3 affine subspaces, for almost every y ∈ Fm there exist
many cubes that satisfy the two requirement. If there are none, we define fx(y) arbitrarily.

In the general case, where the assignment a is not a restriction of P1, P2, we define fx in the
same way, but the analysis is more complicated. The main steps of the general case,

1. Two different degree d polynomials disagree on 1− d
|F| of their domain, so it is unlikely for

a random C1, C2 ∈ C such that C1 ∩C2 = ` and x ∈ ` to satisfy both aC1(x) = aC2(x) and
aC1 |` 6= aC2 |`.

2. Two random cubes C1, C2 ∈ C that intersects on x satisfy aC1(x) = aC2(x) w.p. ε.

3. For ε fraction of x ∈ Fm, exists σ such that a function fx defined when we require ac(x) = σ
is good, i.e. aC ≈ fx|σ for ε fraction of C 3 x, when ≈ means equal on almost all of the
coordinates.

2.2 Global structure

The local structure gave us many good functions fx, each satisfies fx|C ≈ aC for many cubes
C 3 x. Our goal in this section if to find a single x such that its fx is globally good, i.e. fx ≈ aC
for ε fraction of all cubes, and not only of cubes containing x.

We do it by showing that for many x, y ∈ Fm, fx ≈ fy, in the lesson we don’t go quantify
what exactly ≈ means. Notice that since fx, fy are not degree d polynomials, they can be
approximately equal without being equal.

Definition 2.1. For every x ∈ Fm with a function fx, let Fx = {C|x ∈ C, fx|C ≈ aC}.

The global structure proof has two main steps.

1. For many x, y ∈ Fm, PrC [C ∈ Fx ∩ Fy|x, y ∈ C] ≥ Ω(ε2).

2. If PrC [C ∈ Fx ∩ Fy|x, y ∈ C] ≥ Ω(ε2), then fx ≈ fy.

3. There must be x ∈ Fm such that fx ≈ fy for many y ∈ Fm.

In this lesson we will only see the second step, the first one is proven using similar technique
and the third is implied by the first two.

Fix x, y ∈ Fm such that PrC [C ∈ Fx ∩Fy|x, y ∈ C] ≥ Ω(ε2), and let ` be the line connecting
x and y. Let G = (A ∪ B,E) be the following bipartite graph, with A = Fm \ `, B = C 3 x, y
and (z, C) ∈ E if z ∈ C, see Figure 1.

The second largest eigenvalue of the graph G is λ(G) = (1 + o(1)) 1√
q (since it is bipartite,

λ0 = 1, λn−1 = −1), so G is a very good spectral expander. Bounding λ(G) is done by a 2 step
random walk on G, starting from Fm \ `.

In the article, we show that for every subset B′ ⊂ B larger than λ(G)2, the distribution of
picking b ∈ B′ and a random neighbor x ∈ A, is close to the distribution of picking a uniform
x ∈ A and a random neighbor in B′.
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Figure 1: The graph G
Fm \ ` C ∈ C, ` ∈ C
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Figure 2: B′ in G
Fm \ ` C ∈ C, ` ∈ C

B′
z

w

C

fx(w) 6= fy(w)

fx(z) = fy(z)

We prove item 2 by defining B′ = Fx ∩ Fy, which means that |B′| ≥ ε2|B| ≥ λ(G)2|B|.
For every C ∈ B′, by definition aC ≈ fx|C and aC ≈ fy|C , this means that almost all of the
outgoing edges from B′, the edge (z, C) satisfies fx(z) = fy(z), see Figure 2. From the expansion
properties of G, we know that since |B′| ≥ λ(G)2|B|, the outgoing edges of B′ covers almost all
of A, so for almost all points z ∈ A, fx(z) = fy(z) and we are done.

2.3 Low Degree

From the global structure we have a function fx : Fm → F such that fx|C ≈ aC for ε of the
cubes C ∈ C, and we want to show that fx is close to a low degree polynomial. We do it by a
reduction to Rubinfeld Sudan, we show that for almost all d+ 2 points on a line, fx is a degree
d polynomial on these points.

For every d + 2 points zt = z + th, t ∈ {0, . . . d + 1}, if there exist a cube C ∈ C such that
aC(zt) = fx(zt) for every t, then fx is a degree d polynomial on these points (since aC is a degree
d polynomial).

We show that this happens with probability 1−δ using an argument similar to the expansion
of the global structure. We look on the bipartite graph G′ = (L ∪ C, E′), where the left side is
all affine lines in Fm, and the right side contains all cubes, and (`, C) ∈ E′ if ` ⊂ C, see Figure
3.

Let C′ be the set of cubes such that fx|C ≈ aC . This graph is also an expander, and has
similar properties to G. This means that for almost all lines ` ∈ L, there exists a cube C such
that aC |` ≈ fx|`, so for almost all d + 2 points on the line, fx, aC are equal on these points.
Then, we use Rubinfeld Sudan theorem, Theorem 1.1, to conclude that fx is close to a degree d
polynomial.
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Figure 3: G′
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