
High Dimensional Expanders

Lecture Notes: Zig-Zag Product

Instructor: Yotam Dikstein Scribe: Yotam Dikstein

1 Reminder from Last Week

1.1 Weighted Graphs

Let G = (V,E) be a weighted graph and Π1 : E → [0, 1] a distribution on the edges. We define the distribution on

the vertices by

Π0(v) =
1

2

∑
v∼u

Π1({v, u}).

Denote the space of real valued functions with domain V by `2(V ). This is an inner-product space where

〈f, g〉 = E
v∼Π0

[f(v)g(v)].

Example: In a k-regular graph, Π1(e) = 1
|E| and Π0(v) = 1

|V | . This case is our main focus on today’s talk.

1.2 The Adjacency operator

On any graph we have a an adjacency operator A : `2(V )→ `2(V ) that’s defined by

Af(v) = E
u∼

G
v
[f(u)].

This operator corresponds to the symmetric bilinear form:

〈Af, g〉 = 〈f,Ag〉 = E
(v,u)∈E

[f(v)g(u)].

(the orientation of an edge is chosen u.a.r.).

We saw that A is self-adjoint, thus it is orthogonally diagonizeable above the reals: i.e. there is a basis (f1, ..., f|V |)

of `2(V ) and scalars λ1 ≥ λ2 ≥ ... ≥ λn s.t.:

1. ∀i 6= j, fi ⊥ fj .

2. Afi = λifi.

Furthermore we can show that λ1 = 1 and for all 1 ≤ i ≤ n, |λi| ≤ 1, and λ2 < 1 iff the graph is connected.

1.3 Spectral Expander Graphs

Recall the definition from last time:

Definition 1.1 (Two-Sided Spectral Expansion). Let G = (V,E) be a weighted graph, and let AG be it’s adjacency

operator. Let 0 ≤ λ < 1. We say G is a λ-two-sided spectral expander if max(|λ2|, |λn|) ≤ λ.

1
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It is convenient to denote by

λ(G) = λ(AG) := inf{λ ≤ 1 : G is a λ-two-sided expander} =
∥∥A|{1}⊥∥∥2

.

Example: Let Kn be the complete graph on n vertices (weighted uniformly).

Exercise 1.2. Show that Kn is a 1
n−1 -two-sided spectral expander.

hint: Consider Kn’s adjacency operator’s matrix form:

1

n− 1
J − 1

n− 1
I

where J is the all-ones matrix, and I is the identity. J has rank 1, so all eigenvalues of J , except the first one are 0.

Before discussing our construction for expander graphs, we take a detour to discuss a property of expander graphs:

The Expander Mixing Lemma

Recall that last week we saw that we can decompose any f : V → R to f = f‖ + f⊥, s.t. f‖ is a constant function,

and f⊥ is orthogonal to the constant functions. This construction is respected by the graph operator A, i.e. Af‖

is also constant, and Af⊥ is also orthogonal to the constant functions. The following inequality is direct but useful∥∥Af⊥∥∥ ≤ λ(A)
∥∥f⊥∥∥.

This decomposition is very useful, when we want to discuss how A operates on functions (e.g. Oppenheim’s theorem

from last time). Often (such as last time), our “meta proof” follows these lines:

1. Decompose a function f = f‖ + f⊥ that has some combinatorial meaning.

2. Find some combinatorial meaning to f‖.

3. Say that Af⊥ is a negligible error.

We demonstrate this principle to prove this classical result, that show expander graphs have small discrepancy:

Lemma 1.3 (Expander Mixing Lemma). Let G = (V,E) be a λ-two-sided spectral expander. Then for any two disjoint

sets S, T ⊂ V we have

|Pr[E(S, T )]− Pr[S]Pr[T ]| ≤ λ
√
Pr[S]Pr[T ](1− Pr[S])(1− Pr[T ]),

Where Pr[E(S, T )] is the probability to choose an (oriented) edge (s, t) ∈ E s.t. s ∈ S, t ∈ T .

When T = V \ S, the result of this lemma is the definition of edge expansion. However, this is stronger - this

shows that the edges between any two disjoint sets S, T is proportionate to their respective sizes (as you’d expect in

the complete complex), up to an error dominated by λ.

Proof. We want to bound something by the second eigenvalue of the adjacency operator, so it is reasonable to look

for functions that represent S, T somehow, and look at what happens to them under the operation of A.

Consider the indicator functions 1S , 1T : V → R, where 1S(v) = 1 ⇐⇒ v ∈ S (otherwise 0, resp. T ). We can

decompose

1S = 1
‖
S + 1⊥S , 1T = 1

‖
T + 1⊥T

where 1
‖
S is the constant part of S, and 1⊥S is the part orthogonal to it.

Notice that

〈A1S , 1T 〉 = E
(u,v)∈E

[1S(u)1T (v)].
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1S(u)1T (v) is one if and only if (u, v) is an edge between S, T thus

E
(u,v)∈E

[1S(u)1T (v)] = Pr[E(S, T )].

Now let us calculate 〈A1S , 1T 〉 differently:

〈A1S , 1T 〉 =
〈
A1
‖
S , 1
‖
T

〉
+
〈
A1⊥S , 1

⊥
T

〉
or

〈A1S , 1T 〉 −
〈
A1
‖
S , 1
‖
T

〉
=
〈
A1⊥S , 1

⊥
T

〉
.

We notice that 1
‖
S(v) = Pr[S], 1

‖
T (v) = Pr[T ] (because E[1S ] = Pr[S]). Thus

〈
A1
‖
S , 1
‖
T

〉
= Pr[S]Pr[T ].

So we get

| 〈A1S , 1T 〉 −
〈
A1
‖
S , 1
‖
T

〉
| = 1

2
|Pr[E(S, T )]− Pr[S]Pr[T ]| ≤

|
〈
A1⊥S , 1

⊥
T

〉
|.

Now we apply Cauchy-Schwartz to get:

|
〈
A1⊥S , 1

⊥
T

〉
| ≤

∥∥A1⊥S
∥∥∥∥1⊥T

∥∥ ≤ λ ∥∥1⊥S
∥∥∥∥1⊥T

∥∥ = λ
√
Pr[S]Pr[T ](1− Pr[S])(1− Pr[T ]),

where the last equality is due to the fact that

∥∥1⊥S
∥∥2

= ‖1S‖2 −
∥∥∥1
‖
S

∥∥∥2

= Pr[S]− Pr[S]2.

QED

2 Zigzag Product - An Infinite Familiy of Bounded Degree Expander

Graphs

We already showed above that the sequence of graphs {Kn}∞n=1 is a sequence of very good expanders. However, they

are dense - |En| = Ω(n2). Our goal is to construct an infinite family of λ-two-sided spectral expanders

{Gn}∞n=1 for any λ < 1, with a growing number of vertices.

In this lecture we construct this infinite family of bounded degree high dimensional expanders, through an iterative

algorithmic procedure. This construction is due to Reingold, Vadhan and Wigderson [RVW00]. In this construction

we have two steps (which we do over and over again):

1. The Powering step - where we take a graph and increase the spectral expansion, but also increase its degree.

2. The Zigzag product step - where we take a graph G and decrease its degree, and increase its number of vertices.

The spectral expansion of the output graph gets decreased but using an auxiliary graph H, the decrease is mild.

G0 → G2
0 → G1 = G2

0 z©H → G2
1 → ...

Using these two steps we describe an infinite family of bounded degree expander graphs - where we start with a

graph G0 and an auxiliary graph H (with parameters we describe below). We define Gn+1 = G2
n z©H.
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Remark 2.1. A priori, the initial graphs are not known to exists, but one can prove their existence in a simpler

manner (even take dense graphs, or use [Pin73] where the author proves random d-regular graphs are expanders when

d ≥ 3), and find them through exhaustive search. We will discuss this point later on, and just assume we have initial

graphs.

2.1 The Power Step

This step is the more trivial of the two.

Definition 2.2 (Powering of a Graph). Let G = (V,E) be a graph. The powering of G, denoted by G2 or P (G) is the

graph G2 = (V,E′) where

E′ = {{x, z}|∃y ∈ V {x, y}, {y, z} ∈ E}.

The probability of choosing an edge {x, z}, is the probability of choosing a 2-path in G from x to z.

Question 2.3. Do we also include self loops (i.e. the multiset {x, x})?

Exercise 2.4. Show that the adjacency operator of the power graph is AG2 = (AG)2. Conclude that if G is a λ-two-

sided spectral expander, then G2 is a λ2 spectral expander. Is this also true for a one-sided spectral expander?

If we have a d-regular graph, the power G of it is a d2-regular graph with d self-loops. We can remove our self

loops, and the operator associated with the graph will be

d2

d2 − d

[
(AG)2 − 1

d
I

]
.

(why?)

We won’t go into the full analysis, but we can see that if G is close to an optimal d-degree expander graph, then

so is G2 (with or without removing self loops).

2.2 The Zig-Zag Product Graph

The Zigzag step is the main part of the construction. In this step we get a graph G on n vertices and degree D, and

an auxiliary graph H with D vertices and degree d. Our output is a graph G z©H with nD vertices and degree d.

We will show that if the spectral expansion of G and H is good, then so is the spectral expansion of G z©H. Before

describing the zigzag product, we begin by describing the replacement product:

Definition 2.5 (The Replacement Product). Let G,H be as above, and suppose that for each vertex, the edges

adjacent to the vertex are ordered (in any arbitrary order): Ev = (e1, ..., eD). We treat the vertices of H as an index

set i = 1, ..., D. The replacement product is the graph G r©H = (Vrep, Erep) defined as follows:

Vrep = VG × VH ,
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Erep = Ered
rep ∪ Eblue

rep ,

where

Ered
rep = {{(v, i), (v, j)} : {i, j} ∈ EH}

and

Eblue
rep = {{(v, i), (u, j)} : ei ∈ Ev, ej ∈ Eu, ei = ej}

according to the order chosen above.1

Pictorially, imagine the following: we have a graph G with degree D and n vertices. Now, we replace each vertex

in G with a cloud of D vertices - the vertices in H.

The blue edges are the edges between indexes (i.e. if v, u are adjacent in G, then there are two distinct vertices in

the cloud (v, i), (u, j) that are adjacent with a blue edge.

The red edges are just local copies of the graph H.

We won’t give a probabilistic description to the random walk on G r©H, but we will give two random walks - one

on the blue edges, and one on the red.

1. On the red edges - the probability for each edge is Pr[(v, i), (v, j)] = PrG[v]PrH [(i, j)].

2. One the blue edges Pr[(v, i), (u, j)] = PrG[(v, u)].

Note that both walks are not even connected. However, composing them one after another gives the zigzag product.

Definition 2.6 (The Zigzag Product). Let G,H as above. The Zigzag product is the graph G z©H whose vertex set is

Vzigzag = VG × VH , and edge set is

E = {{(v, i), (u, k)} : ∃j1, j2 {(v, i), (v, j1)} ∈ Ered
rep , {(v, j1), (u, j2)} ∈ Eblue

rep , {(u, j2), (u, k)} ∈ Ered
rep ,}.

The probability of {(v, i), (u, k)} is the probability of walking from (v, i) to (u, k) in G r©H in three steps, conditioned

on taking the first and third steps in the red edges, and the second in the blue edges.

The reason for the name “Zigzag” is the red-blue-red walk.

1Picture adapted from lecture by Neil Olver.

http://www.math.mcgill.ca/goren/667.2010/Neil.pdf
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3 Intuition for Why the Spectral Expansion is Good

Think about the walk on G. Suppose we traversed to v ∈ VG by the edge {v, w}. In the next step we choose one edge

{v, u} ∈ Ev uniformly at random (and independent of {v, w}), and traverse it to an edge u.

In the Zigzag product, after we traversed to v by {v, w}, we choose the next edge {v, u}, but not independent of

{v, w} - we choose it as a step in the auxiliary expander graph H.

Our intuition is that a step in an expander graph is “similar” (in some sense) to choosing independently. Thus our

product graph, is the derandomization of the traversing process in G, by the expander H. If G,H are good enough

expanders, we should get a decent expander by this.

4 Quick Analysis

It is easy to see that the degree of G z©H = degree(H)2, no matter the initial degree of G. Thus we achieve a degree

reduction. In addition, we increase the number of vertices multiplicatively by degree(G). It is left to analyze the

spectral expansion of the resulting graph.

First of all, notice that separately, the red-edge graph, or the blue edge graph are bad in terms of expansion.

However, there are some functions where the adjacency operators of the red, or blue edge graphs operate well:

Claim 4.1. Denote by PG the walk on the blue edges, and ÂH the walk on red edges.

1. Let f : Vzigzag → R s.t. for any v ∈ VG and i, j ∈ VH , f(v, i) = f(v, j) (i.e. f is constant on clouds). Then

〈PGf, f〉 =
〈
AGf̃ , f̃

〉
where f̃ : VG → R is defined by f̃(v) = f(v, i) (the choice of i is arbitrary).

2. Left g : Vzigzag → R be s.t. for any v ∈ G,

E
i∈VH

[g(v, i)] = 0.

Then ∥∥∥ÂHg
∥∥∥ ≤ λ(AH) ‖g‖ .

Proof. The first item is left as an exercise [demonstrate on board].

As for the second item, Notice that the red-edge walk is separated to connected components, hence when calculating∥∥∥ÂHg
∥∥∥2

=
〈
ÂHg, ÂHg

〉
= E

((v,i),(v,j))∈G2

Ered

[g(v, i)g(v, j)],

we can use conditional expectation on v ∈ G (i.e. first calculate the average for each component Hv, and then average

them separately).

E
((v,i),(v,j))∈Ered

[g(v, i)g(v, j)] = E
v∈G

[〈AHg|Hv
, AHg|Hv

, ]〉 .

In each component Hv, ‖AHg|Hv
‖ ≤ λ(AH) ‖g|Hv

‖ (because g on each component is orthogonal to the constant

function) thus from Cauchy-Schwartz the result follows:

E
v∈G

[〈AHg|Hv
, AHg|Hv

, ]〉 ≤ E
v∈G

[λ(AH)2 〈g|Hv
, g|Hv

, ]〉 = λ(AH)2 〈g, g〉 .

Equipped with the claim above, we begin by decomposing functions on the vertices in a manner that respects the

red and blue edges.
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Claim 4.2 (Decomposition of functions). Let f : G z©H → R be any function. Then we can orthogonally decompose

f = fG + fH s.t.

1. fG is constant on any component Hv := {(v, i) : i ∈ H}.

2. For all v ∈ G, the expectation on each component Hv for fH is 0, i.e

E
i∈Hv

[fH(v, i)] = 0.

Furthermore, if f ⊥ 1 then fG ⊥ 1.

Proof. The full proof is an exercise. We note however that to obtain the value of fG in each cloud v ∈ G, we can

simply average f on the vertices of the cloud.

This decomposition of the functions on the vertex space, corresponds to the decomposition of the adjacency operator

of the zigzag product as follows:

Claim 4.3 (Decomposition of operators). We can decompose the adjacency operator M of G z©H to

M = ÃHPGÃH

where

1. ÃH is a step on the red edges.

2. PG is a step on the blue edges.

Proof. Also an exercise (immediate from the definition).

Given these claims, we prove a bound on the spectral expansion of the zigzag product. There is a more delicate

analysis on the graph that gives a tighter bound, however we give this result only.

Theorem 4.4. Let G be an α-two-sided spectral expander and H be a β-two-sided spectral expander. Then G z©H is

a (β + max(α, β2))-two-sided spectral expander.

Proof. Let f : VG × VH → R be a function on the vertices that is perpendicular to the constant functions. Denote by

M the adjacency operator of the zigzag-product. By our two previous claims

〈Mf, f〉 =
〈
MfG, fG

〉
+
〈
MfH , fH

〉
+ 2

〈
MfG, fH

〉
=〈

ÃHPGÃHf
G, fG

〉
+
〈
ÃHPGÃHf

H , fH
〉

+ 2
〈
ÃHPGÃHf

G, fH
〉

(4.1)

It is immediate that ÂHf
G = fG. Thus by item 1 of the first claim we obtain that〈

ÃHPGÃHf
G, fG

〉
=
〈
PGÃHf

G, ÃHf
G
〉

=
〈
PGf

G, fG
〉
≤ α

∥∥fG∥∥2
.

Given the second item of the first claim, and Cauchy-Schwartz:〈
ÃHPGÃHf

H , fH
〉
≤ ‖PG‖

∥∥AHf
H
∥∥2 ≤ β2

∥∥fH∥∥2
= β2(‖f‖2 −

∥∥fG∥∥2
),

and

2
〈
ÃHPGÃHf

G, fH
〉
≤ 2β

∥∥fG∥∥ ∥∥fH∥∥ ≤ β ‖f‖2 .
The theorem follows.
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Open Question

This construction is an iterative algorithmic construction for expander graphs. This gives rise to the following open

question:

Question 4.5. Is there a similar construction where we can get two high dimensional expanders, and produce another

high dimensional expander?
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