
High Dimensional Expanders

Lecture 3: Random Walks on High Dimensional Expanders

Instructor: Irit Dinur Scribe: Boaz Menuhin

In this lecture we present random walk on graphs 2.1, then we generalize to random walks on high dimensional

complexes 2.2 and introduce the lazy and non-lazy variant of random walks. We end with stating that random walk

expander is a two-sided spectral expander 2.3.

1 The “ideal” expander

Let G a graph with eigenvalues 1 = λ1 ≥ λ2 ≥ ... ≥ λn ≥ −1 then

• G is a λ one-sided spectral expander if λ2 ≤ λ

• G is a λ two-sided spectral expander if max(|λ2|, |λn|) ≤ λ

The ”best” or rather ”ideal” expander is a complete graph with self loops. For such a complete graph, the eigenvalues

are 1 = λ1 ≥ λ2 = ...λn = 0, and the appropriate adjacency matrix J is

J =


1
n

1
n . . .

1
n

. . . . . .
...

...
. . .

 =
1

n
· 1n×n.

One can see that J · 1 = 1.

And that for f ⊥ 1, J · f = 0 · f .

We have also previously defined 〈f , g〉 = Ev∼πf(v) · g(v) where π0 is the distribution over vertices.

And the matrix Jπ =

− π0 −

−
... −


For f ⊥ 1 it holds that 〈f ,1〉 = 0 namely Ev∼πf(v) = 0 i.e. Jπ · f =

∑
v∈V π0(v) · f(v) = 0

2 Random walks

Definition 2.1. Let M : `2(V1)→ `2(V2) be a linear operator ‖M‖op , sup f 6=0
f∈l2(V1)

‖Mf‖`2(V2)

‖f‖`2(V1)

Note: sometimes people study transformation between `p to `q, we focus only on `2

Claim 2.2. Suppose M is self adjoint, then ‖M‖ =| λmax |

Proof. M is self adjoint, therefore, it has an orthogonal basis of eigenfunctions. i.e. for every f we can write

f =
∑n
i=1 αigi where gis are basis of eigenfunctions/eigenvectors

‖M‖2 = 〈Mf ,Mf〉 = 〈
∑

αiλigi ,
∑

αiλigi〉 =
orthogonality

∑
α2
iλ

2
i ≤

(∑
α2
i

)
· λ2max.

‖f‖2 = 〈f , f〉 =
∑

α2
i .
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An expander graph can be viewed as a linear operator that approximates J in the operator norm.

Claim 2.3. If A is the transition matrix of a γ-spectral-expander then ‖A− J‖ ≤ γ. In particular, for all f

‖(A− J)f‖ ≤ γ · ‖f‖

Proof. Let fi be the eigenfunction of A corresponding the the ith eigenvalue λi. Clearly f1 = 1. Notice A1 = 1 and

J1 = 1 thus (A−J)1 = 0. Moreover, for i > 1, fi ⊥ 1 : ‖Afi‖ ≤ γfi and Jfi = 0, therefore (A−J)fi = Afi−0 = λifi.

We get

(A− J)fi =

0 i = 1

λifi i ≥ 1

⇒ ‖A− J‖ = λmax(A− J) = max{|λ2(A)|, |λn(A)|} ≤ γ

2.1 Random walks on graphs

A random walk on a graph G = (V,E) is a sequence (either finite or infinite), of vertices from V (e.g (v0, v1, v2, v1, ...)).

There are many types of random walks with different properties. One such type of random walk can be described by

the following algorithm:

Definition 2.4 (Up-down random walk). On graph G

• Start at a random vertex v0 ∼ π
Suppose we are at some vector vt. Choose vt+1 by the following process:

• UP: Choose a random edge e containing vt

• DOWN: Choose a random vertex u ∈ e (uniformly): vi+1 = u

Notice: there is always probability 1/2 to stay in place, which makes the transition matrix of the up-down random

walk to be

TUP-DOWN =
1

2
Id+

1

2
A

where A is the transition matrix of the non-lazy up-down random walk (where in the down step we chose vt+1 6= vt).

To ease our understanding of random walks, consider a bipartite graph B(G) with two parts V0, V1 such that

V0 = VG, V1 = EG. i.e. a bipartite graph that is made of a set of vertices V0 which represents vertices in G and

a set of vertices V1 which represents edges in G. In the bipartite graph B(G) there will be edges between vertices

v ∈ V0, e ∈ V1 if v ∈ e. i.e. EM = {(v, e) if v ∈ e for v ∈ VG, e ∈ EG}. Notice that the the vertices in V1 will be

2-regular.

Figure 1: Example of a graph G and its appropriate graph B(G)
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Looking more carefully, we can break the random walk into two steps that are being executed alternately over and

over again. These are the selection of edge (up) and the selection of a vertex in the edge (down). Which leads us to

define and examine the following operators:

Definition 2.5. The Down operator D : `2(X(1))→ `2(X(0)) is defined by

Df(v) , Ee|vf(e)

(recall our notation e|v is an edge e which contains v, v|e is a vertex v contained in e). More generally s′|s is a

face s′ that is either containing s or contained in s.

The Down operator is a linear operator, it may be helpful to think of the matrix form:

DX(0)

X(1)

f

Notice that D[v, e] = Pr [e|v] and that D is row-stochastic, i.e.
∑
e∈E D[v, e] = 1.

Definition 2.6. The Up operator U : `2(X(0))→ `2(X(1)) is defined by

Ug(e) = Ev|eg(v) = Ev|(v1,v2)g(v) =
1

2
g(v1) +

1

2
g(v2)

as there are exactly two (uniform) choices to choose a vertex from an edge.

The up-down random walk we have defined in Definition 2.4 is actually a composition of operators:

`2(V )
U−→ `2(E)

D−→ `2(V )

DU : `2(V )→ `2(V )

DUg(v) = E
v′∼v

G(V ) = E
e|v
v′|e

G(V ) =
1

2
Id+

1

2
A (2.1)

Where A is the adjacency matrix of the graph. One may think of this as a two step walk on the bipartite graph B(G)

starting from the v side.

2.2 Random walks in higher dimension

Let us now introduce the higher dimensional version of the up-down random walk. From now on, this will be referred

to as the upper random walk.

Definition 2.7 (Upper random walk). For k ≤ d− 1

• Start at a random k-face s ∼ πk
Suppose at time t we are at some face st. Choose st+1 by the following process:

• UP: Choose s′ by choosing uniformly random (k + 1)-face that contains st.

• DOWN: Choose st+1 to be a k-face by choosing uniformly random a single vertex from face s′ and erase it

(st+1 ⊂ s′).
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Let us now introduce the higher dimensional version for the up and down operators:

• Down operator D : `2(X(i+ 1))→ `2(X(i)) is defined by Df(s) , Es′|s f(s′) where s ⊂ s′ i.e. the expectation

is conditioned on s′ that contains s.

• Up operator U : `2(X(i))→ `2(X(i+ 1)) is defined exactly the same but for s′ ⊂ s by Uf(s) , Es′|s f(s′) i.e.

the expectation is conditioned on s′ that is a subset of s.

Having the down operator generalized for higher dimensions, we can also introduce another type of random walk

which is defined as applying the down operator before the up operator.

Definition 2.8 (Lower random walk). for d ≥ k ≥ 0

• Start at random k face s0 ∼ πk
Suppose at time t we are at some face st. Choose st+1 by the following process:

• DOWN: Choose s′ to be a (k − 1)-face by choosing uniformly random single vertex from face st and remove it.

• UP: Choose st+1 by choosing a random (k)-face that contains st (s′ ⊂ st+1, according to πk|st)

Notice: Performing the lower random walk with i = 0 is going down to X(−1) = {∅}. Performing the up step

from the empty set is equivalent to choosing some vertex v ∼ π0, i.e. selecting a vertex distributed according to the

stationary distribution. This means that vt+1 is chosen independently from vt. This is nothing but Jπ.

We have just defined the upper random walk and the lower random walk for any simplicial complex.

How do the upper random walk and lower random walk relate to each other?

Example: Let us compute the random walk of DU and UD on a 1-dimensional complex (i.e. a graph). Reminder:

UDf =

− π0 −

−
... −

 f (2.2)

DUf =

(
1

2
Id+

1

2
A

)
· f (2.3)

where A is the transition matrix of the graph. Notice that for the upper random walk (DUf) there is a 1/2 probability

to stay at the same vertex (starting at vertex v, choosing an edge, and then a vertex in the edge, has probability 1/2

to choose v). Such a behavior is called 1/2-lazy random walk. We’ve seen Equation 2.3 as a result of Equation 2.1 and

the analysis that followed.

Definition 2.9 (Non-lazy upper random walk). The non-lazy upper random walk has 0 probability to return to same

face/vertex, i.e. for k ≤ d− 1

• Start at a random k-face s ∼ πk
Suppose at time t we are at some face st. Choose st+1 by the following process:

• UP: Choose s′ by choosing a random (k + 1)-face that contains st according to Πk+1|st

• DOWN: Choose st+1 to be a k-face by choosing uniformly at random a single vertex from face s′ and erase it

(st+1 ⊂ s′) s.t. st+1 6= st

i.e.

A = 2DU − ID

Where A is the relevant adjacency matrix of the graph. This derives directly from Equation 2.3.
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Describing the lazy upper random walk on faces in X(k) we get that DU = k+1
k+2Ak + 1

k+2Id where Ak is a

transition matrix between faces in X(k). From this formulation we can derive algebraic description for the non-lazy

upper random walk Ak = k+2
k+1DU −

1
k+1Id

Let M+
k denote the non-lazy upper random walk transition operator (Ak from above). If k is clear from the context,

we omit it and write M+.

2.3 Random walks on spectral γ-bounded high dimensional expander

We have seen in Claim 2.3 that in expander graphs

‖ Jπ

=

UD(lower)

− A

=

M+

‖ ≤ γ.

We will now describe random walks on complexes to define expansion of complexes.

Notations:

• Down operator from X(k + 1) to X(k) : D↘k = Dk+1↘

• Up operator to X(k) from X(k − 1) : U↗k = Uk−1↗

• M+
k non-lazy upper random walk moving from X(k) to X(k)

(When the context is clear we may omit the index k)

Claim 2.10. 〈U↗k+1g , f〉X(k+1) = 〈g ,D↘k〉X(k)

Proof.

〈U↗k+1g , f〉X(k+1) = E
s∈πk+1

[U↗k+1g(s) · f(s)]

= E
s
E
s′|s

g(s′) · f(s)

= E
s′

E
s|s′

f(s) · g(s′)

= E
s′
Df(s′) · g(s′)

= 〈g ,D↘kf〉X(k)

Definition 2.11 (γ random walk high dimensional expander). A d-dimensional complex X is a γ random walk high

dimensional expander if for every k s.t. 0 ≤ k ≤ d− 1

∥∥M+
k − Uk↗Dk↘

∥∥ ≤ γ
i.e. a complex is γ-random-walk high dimensional expander if the distance between the non-lazy upper random walk

and the lower random walk is bounded by γ for every dimension 0 ≤ k ≤ d− 1.

Lemma 2.12. If X is a d-dimension γ-two-sided-link expander then it is a γ-random-walk expander

Recall: Xs is the link of s where s is some face in X .

Recall: X is a γ-link expander if for every s ∈ X(k),−1 ≤ k ≤ d− 2 : λmax(Xs) ≤ γ (in this notation we refer

to the maximal absolute eigenvalue (λmax = max(|λ2|, |λn|)) of the 1-skeleton of Xs).
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Proof. We will prove the lemma for d = 2

for k = 0:

We need to show: ‖M+
0 − U↗0D0↘‖ ≤ γ

‖A− Jπ‖ ≤ γ (By definition of expansion of the link of ∅)

This follows since M+
0 is the non lazy upper random walk, (i.e. M+

0 = 0 · Id + 1 · A = A) and U↗0D0↘ is the lower

random walk to X(−1) which the operator Jπ introduced previously

for k = 1: We need to show
∥∥M+

1 − U↗1D1↘
∥∥ ≤ γ

It is enough to show |〈(M+
1 − UD)f , f〉| ≤ γ〈f , f〉.

For each v ∈ X(0) we define fv : Xv(0) → R as a localization of f to vertices in the link of v. i.e. for

u ∈ Xv(u) fv(u) := f((v, u)).

〈M+
1 f , f〉 = E

e
M+

1 f(e) · f(e) = E
e∼e′

f(e) · f(e′)

= E
t∈X(2)
triangle

E
e1 6=e2⊂t

f(e1) · f(e2)

= E
v

E
v∈t={u,v,w}
e1={v,u}
e2={v,w}

f(e1) · f(e2)

= E
v
〈Avfv , fv〉

〈U0↗D↘0f , f〉 = 〈D↘0f ,D↘0f〉

= E
v
D↘0f(v) ·D↘0f(v)

= E
v

[
E
e1|v

f(e1)

] [
E
e2|v

f(e2)

]
= E

v
E

{u,v},{w,v}|v
fv({u, v} \ v)fv({w, v} \ v)

= E
v

E
u,w∼Xv(0)

fv(u)fv(w)

To summarize, let f be an eigenfunction of eigenvalue λi for i ≥ 2 s.t. ‖f‖ = 1. As such f ⊥ 1 and so Jf = 0 (As

Jf = 0 for all f ⊥ 1 ).

|〈M+f , f〉 − 〈UDf , f〉| = |E
v

E
(u,w)∼xv(1)

fv(u)fv(w)− E
v

E
u,w∼Xv(0)

fv(u)fv(w)|

= E
v
| E
(u,w)∼xv(1)

fv(u)fv(w)− E
u,w∼X(0)

fv(u)fv(w)|

= E
v
|〈Avfv , fv〉 − 〈Jvfv , fv〉|

= E
v
|〈(Av − Jv)fv , fv〉|

≤ E
v
|γ ‖fv‖2 | = γ E

v
‖fv‖2

The last inequality follows Claim 2.3 because the link of v is an expander graph, as X is a γ-link-expander.
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