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In this lecture we construct a d-dimensional simplicial complex (definition 2.1), named the spherical building or the

flags complex. We give an elementary description of this complex and investigate the link structure, computing their

spectral properties using the general theory of expansion for bipartite graphs (subsection 1) and relying on Garlands

method via Oppenheim’s theorem (subsection 2.2).

1 Preliminaries: expansion of bipartite graphs

Let G = (V,E) be a connected bipartite graphs. Let V = A t B then as Pr [E(A,A)] = 0 and Pr [E (B,B)] = 0 the

adjacency matrix takes the form M =

[
0 T

T ∗ 0

]
, where the zero blocks correspond to the probabilities to traverse

from A to A or from B to B. We shall now find relation between the eigenvalues of T ∗T, TT ∗ and M .

Claim 1.1. If λ is an eigenvalue for M then λ2 is an eigenvalue for T ∗T and TT ∗

Proof. Let f ∈ l2 (V ) such that Mf = λf . Set fA : A → R be fA (a) = f (a) and similary set fB . Then TfB = λfA

and T ∗fA = λfB , thus T ∗TfB = T ∗ (λfA) = λ2fB and λ2 is an eigenvalue of T ∗T similary λ2 is an eigenvalue of TT ∗.

On the other hand

Claim 1.2. If λ 6= 0 is an eigenvalue of T ∗T then ±
√
λ are eigenvalues of M .

Proof. If T ∗Tg = λg, then as T ∗T is positive definte λ > 0. Let f = Tg and define

h (v) =


f(v)√
λ

v ∈ A

g (v) v ∈ B
,

then

Mh =

Tg (v) v ∈ A

T ∗ f(v)√
λ

v ∈ B
=

f (v) v ∈ A
T∗Tg(v)√

λ
v ∈ B

=

f (v) v ∈ A
√
λg (v) v ∈ B

=
√
λh,

So
√
λ is an eigenvalue of M . Note that similarly −

√
λ is also an eigenvalue of M .

Remark 1.3. There is a similar result for TT ∗.

2 The Flag Complex

Let q = pn be a power of some prime p. Consider the field Fq and the vector space Fmq , a line in Fmq is a subspace of

the form l = spanFq
({a}) for some 0 6= a ∈ Fmq .

Let us denote Gr (m, k) as the set of all k-dimensional subspaces of Fmq . 1

Definition 2.1. The flag complex of dimension d = m− 2 is given by:

X (0) =

m−1⋃
k=1

Gr (m, k) ,

1Note that |Gr (m, 1)| = qm−1
q−1

.
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X (1) = {{V,W} |V ⊂W V,W ∈ X (0)}

and X is a clique complex, i.e {A1, ..., Ai+1} is a clique in (X (0) , X (1)) if and only if {A1, ..., Ai+1} ∈ X (i). X has

the uniform distribution on X (d) and the induced distributions for i < d.

Definition 2.2. A sequence 0 ( V1 ( V2 ( ... ( Vm−1 ( Fmq is called a flag.

Claim 2.3. Every d-face of the flag complex is a flag.

Proof. By induction on d, for d = 1 a d-face is just an edge, {A1, A2} so 0 ( A1 ( A2 ( Fmq is a flag. Next let

{A1, ..., Am−1} be a clique in (X (0) , X (1)) and WLOG assume that A1 is of smallest dimension. As {A1, ..., Am−1}
is a clique and A1 is of smallest dimension we must have that A1 ( Ai for all i ≥ 2. Let Qi = Ai/A1 then Qi is a

d− 1 in the flag complex of dimension d− 1 thus by the induction hypothesis a flag

0 ( Q2 ( ... ( Qm−1 ( Fmq /A1 = Fm−1q

but then

0 ( A1 ( A2 ( ... ( Am−1 ( Fmq

is also a flag.

Let us consider the case d = 1. In this case our vertices are lines and planes in F3
q. The number of lines is q2 +q+1,

and by the dualty of lines and planes 2 we have that the number of planes is also q2 + q+ 1. The flag complex we get

is a bipartite graph. Let us find the degree of a plane, for a fixed plane P the number of lines contained in P is:

#of non-zero points in the plane

#of non-zero points that span the same line
=
q2 − 1

q − 1
= q + 1.

And the degree of the line L is given by the number of planes containing it, which is:

#of points outside L

#of points outside L spanning the same plane
=
q3 − q
q2 − q

= q + 1

We shall now disscus spectral properties of more general bipartite graphs so we would have the tools to compute the

spectral properties of the flag grpah and links in the flag complex.

2.1 The one dimensional flag complex (graph)

Let us focus on the one dimensional flag complex. This is a bipartite graph whose vertices are all 1-dimensional (lines)

and 2-dimensional (planes) linear spaces in a 3 dimensional vector space F3
q. An edge connects a line to a plane if the

line is in the plane. If we take a length two path in this graph originating at a line, we have a 1
q+1 chance to return to

the original line, and equal probability to reach all other lines (as any two different lines in F3
q span a plane) hence,

T ∗T =
1

q + 1
Id+

(
1− 1

q + 1

)
K, denote α =

1

q + 1
.

Let J be the matrix with all entries β = 1
q2+q+1 then J = βId+ (1− β)K and by a simple computation

T ∗T =
1− α
1− β

J +
α− β
1− β

Id,

2In 3 dimensions a planes is determined by a single equation ax+ by + cz = 0 where a, b, c are the coordinates of the dual line.
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so the eigenvalues of T ∗T are 1 and

α− β
1− β

=
1

q + 1

q2 + q + 1− (q + 1)

q2 + q + 1− 1
=

1

q + 1

q2

q2 + q
<

1

q + 1

Hence the eigenvalues of M are ±1 and roughly ± 1√
q+1

, so the one dimensional flag complex is one sided expander

with λ < 1√
q+1

.

2.2 Links in the flag complex

We now return to the d-dimensional flag complex, and explore the structure of the links and their expansion. Given

σ ∈ X (d− 2), one can always write

σ = {V1 ⊂ V2 ⊂ · · · ⊂ Vi−1 ⊂ Vi+1 ⊂ · · · ⊂ Vj−1 ⊂ Vj+1 ⊂ · · · ⊂ Vm−1}

for a pair of indices 1 ≤ i < j ≤ m− 1.

There are several cases:

• Suppose first that i = 1 and j = 2. In this case Xσ is isomorphic to the one dimensional flag complex (whose

vertices are 1-dimensional and 2-dimensional spaces in V3), thus λ (Xσ) ≤ 1√
q+1

.

• If j = i+ 1 then σ has is an increasing sequence of subspaces of all dimensions except i, i+ 1. A vertex in this

link is a subspace V such that

Ai−1 ⊂ V ⊂ Ai+2.

Every V ⊃ Ai−1 is determined by V/Ai−1 so it is convenient to pass to the quotient space (looking at cosets of

Ai−1),

{0} = Ai−1/Ai−1 ⊂ V/Ai−1 ⊂ Ai+2/Ai−1 w F3

The combinatorial incidence structure becomes the same as the case of i = 1, j = 2. We get that Xσ is the one

dimensional flag complex, thus λ (Xσ) < 1√
q+1

.

• If σ has subspaces of all dimensions except i, j such that i > j+1 then Xσ actually has a simpler structure. One

can check that it is the complete bipartite graph with q + 1 vertices on each side. Indeed fixing any two linear

spaces U1, U2 such that dimU2−dimU1 = 2, the number of subspaces V sandwiched between them U1 ⊂ V ⊂ U2

is exactly q + 1. Clearly this is an expander and in particular λ (Xσ) < 1√
q+1

.

So we get a uniform bound on all links of dimension 1, λd−2 <
1√
q+1

. For σ ∈ X (d− 3) we can use Oppenheim’s

theorem (from Lecture 1) to get λ (Xσ) ≤ λd−2

1−λd−2
= 1√

q+1−1 , continuing inductivly if dim (σ) = d− k then λ (Xσ) ≤
1√

q+1−k+2
, thus for all

√
q � d we get expansion all the way.
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