High Dimensional Expanders

Lecture 6

Scribe: Dafna Sadeh

Lecture by: Irit Dinur, Weizmann Institute of Science

In this lecture we define a variant of expansion that focuses on small set, called Small Set Expander and show a randomized construction of such graphs. We demonstrate how to use this expander as a constraint graph in order to build an error correcting code with a constant relative distance. Finally, we show a novel construction by Vadhan of an HDX Cayley graph related to this code.

1 From expander to error correcting code

A bipartite graph (A, B, E) is (d, e) regular if for each $a \in A$ deg(a) = d and for each $b \in B$ deg(b) = e.

Definition 1.1. Small Set Expander. A (d, e) regular bipartite graph (A, B, E) is an (α, h) -Small Set Expander (SSE) if $\forall S \subseteq A$ s.t. $|S| \le \alpha |A|$, $|\Gamma(S)| \ge hd|S|$ where $\Gamma(S) = \{b \in B | \exists a \in S. \ (a, b) \in E\}$.

Using the probabilistic method we construct a SSE.

Lemma 1.2. randomized construction of SSE. There exist $d, n_0 \in \mathbb{N}$ s.t for any $n > n_0$ a random bipartite graph on |A| = n and $|B| = \frac{3}{4}n = m$ chosen by letting each $u \in A$ choose d neighbors independently is a $(\alpha = \frac{1}{100d}, h = \frac{3}{4})$ SSE with probability > 0.

Proof. Fix any $S \subset A$ of size $|S| = s \le \alpha n = \frac{n}{100d}$ and $T \subset B$ of size $|T| = t = hd|S| = \frac{3}{4}d|S|$. The probability of a "Bad event" that $\Gamma(S) \subseteq T$ is $\le \left(\frac{t}{m}\right)^{ds}$. We sum over the probability of all possible bad events and get that:

$$\sum_{s=1}^{\alpha n} \binom{n}{s} \Pr(Bad(S,T) \text{ for } |S| = s \text{ and } |T| = hds) < 1,$$

Which means that Pr(The graph is SSE) > 0.

_

$$\sum_{s=1}^{\alpha n} \binom{n}{s} \binom{m}{t} (\frac{t}{m})^{ds} \stackrel{\text{(1)}}{\leq} \sum_{s=1}^{\alpha n} (\frac{ne}{s})^s (\frac{me}{t})^t \left(\frac{t}{m}\right)^{ds} \stackrel{\text{(2)}}{=}$$

$$\sum_{s=1}^{\alpha n} e^{s + \frac{3}{4}ds} (\frac{n}{s})^s (\frac{m}{t})^{\frac{3}{4}ds} (\frac{t}{m})^{ds} \stackrel{\text{(3)}}{=}$$

$$\sum_{s=1}^{\alpha n} e^{s + \frac{3}{4}ds} (\frac{n}{s})^s (\frac{t}{m})^{\frac{ds}{4}} \stackrel{\text{(4)}}{=}$$

$$\sum_{s=1}^{\alpha n} e^{ds (\frac{1}{d} + \frac{3}{4})} (\frac{n}{s})^s (\frac{ds}{n})^{\frac{ds}{4} - s} \stackrel{\text{(6)}}{=}$$

$$\sum_{s=1}^{\alpha n} e^{ds (\frac{1}{d} + \frac{3}{4} + \frac{\ln d}{d})} \left(\left(\frac{ds}{n}\right)^{\frac{1}{4} - \frac{1}{d}} \right)^{ds} \stackrel{\text{(7)}}{\leq}$$

$$\sum_{s=1}^{\alpha n} e^{ds (\frac{1}{d} + \frac{3}{4} + \frac{\ln d}{d})} \left(\left(\frac{1}{100}\right)^{\frac{1}{4} - \frac{1}{d}} \right)^{ds} \stackrel{\text{(8)}}{\leq}$$

$$\sum_{s=1}^{\alpha n} e^{ds (\frac{1}{d} + \frac{3}{4} + \frac{\ln d}{d})} \left(\left(\frac{1}{100}\right)^{\frac{1}{4} - \frac{1}{d}} \right)^{ds} \stackrel{\text{(8)}}{\leq}$$

$$\sum_{s=1}^{\alpha n} \frac{1}{4}^{ds} < \frac{1}{3} < 1$$

The first inequality is due do Stirling approximation, the 4th equality is by the definitions of t and m and the 7th and 8th inequality are for large enough n_0 and d.

Remarks:

- If (A, B, E) is a random (d, e)-regular graph then the analysis is more subtle, but it still true. In our analysis the B side isn't necessarily regular. This makes the probabilities independent and easier to analyze.
- If we want to analyze the spectrum we can use Cheeger's inequality.
- Friedman proved a near-optimal spectral bound: $\lambda_2 \leq 2\sqrt{d-1} + \epsilon$

Claim 1.3. Unique Neighbor Claim. If a (d,e) regular bipartite graph (A,B,E), is an (α,h) -small set expander for h>1/2, then every set $S\subset A$ of size $|S|\leq \alpha |A|$ has a unique neighbor i.e $\exists v\in B$ s.t v is adjacent to exactly one element in S.

Proof. Fix S of size $|S| \le \alpha |A|$ and let $T = \Gamma(S)$. Assume by contradiction that every $v \in T$ has at least two neighbors in S, then:

$$d|S| < 2hd|S| < 2|T| < E(S,T) = d|S|.$$

We use (d, e) regular bipartite graphs F = (A, B, E) as a constraint graphs to build a linear code. Assuming |A| = n and |B| = m we define:

$$C_F = \{ w \in \{0,1\}^n \mid \forall b \in B. \sum_{i \sim b} w_i = 0 \mod 2 \}.$$

Each constraint is over e bits. C_F is a linear sub-space of dimension $dim(C_F) \leq n - m = |A| - |B|$.

Claim 1.4. from SSE to code. Assume (d, e) regular bipartite graph (A, B, E) is an (α, h) -small set expander for h > 1/2. Then C_F is a linear code of relative distance $\geq \alpha$.

2

_

3

Proof. Let $w \neq w' \in C_F$ and define $S = \{i \in [n] | w_i \neq w_i'\}$. Assume by contradiction that $|S| < \alpha n$, then S has a unique neighbor v that adjacent to exactly one element in S. Since $\sum_{i \sim v} (w \oplus w')_i = 1$, we get that $\sum_{i \sim v} w_i = \sum_{i \sim v} w_i' + 1$ which means that the constraint defined by v is unsatisfied either by w or by w'. A contradiction to $w, w' \in C$. \square

Low Density Parity Check Codes (LDPC) [Gallager 63] The idea of building of a code from a set of sparse constraints is well studied. This codes are called LDPC for low density parity check. Linear codes can be given by a $k \times n$ generating matrix G over \mathbf{F}_2 as $C = \{m^T G | m \in \mathbf{F}_2^k\} \subseteq \mathbf{F}_2^n$.

An alternative way to give a code is using the linear relations that the coordinates of a code word must satisfy. Formally, define H, an $n \times l$, (l = n - k) parity check matrix over \mathbf{F}_2 , $C = \{w \in \mathbf{F}_2^n | w^T H = 0\} = left_{-}\ker(H)$.

H is a "parity check" in that every column of H is a parity check constraint. Observe that the rows of G are the basis of the words that satisfy the H-constraints, thus, $\operatorname{span}(\operatorname{col}(H)) = (\operatorname{rows}(G))^{\perp}$. Each column of H is a linear constraint on the words in G. We say that H is an LDPC if it has a "few" 1's it is.

Q: Can G be sparse?

A: No. Since each row of G is a code word, thus must have $\geq \delta n$ 1's in a code of relative distance δ .

Q: Can H be sparse?

A: Yes. We need to find a sparse basis for $(Rows(G))^{\perp}$

H can be viewed in a combinatorial way as a constraint graph.

2 Construction of Cayley HDX - Salil Vadhan Nov' 18

Let F = (A, B, E) be a right 3-regular bipartite graph, $A = \{a_1, a_2, ..., a_n\}$, |B| = 0.99n. We use F as a constraint graph for the code $C_F = \{w \in \{0, 1\}^n | \sum_{i \sim v} w_i = 0 \mid \forall v \in B\}$ - "the left kernel of F". Let $G_{k \times n}$ for $k \geq 0.01n$, be a generating matrix for C_F . Since each $a_i \in A$ represents a bit in location i in a code word, there is a matching between A to the columns of G. Let $S = \{s_1, s_2, ..., s_n\}$ be the columns of G.

We look at the Cayley graph $Cay(\{0,1\}^k, S)$. Let X = X(0), X(1), X(2) be the "clique complex" of this graph.

- $X(0) = \{0,1\}^k, \, |X(0)| \geq 2^{0.01n}$
- $X(1) = \{(u, v) | u = v + s \text{ for some } s \in columns(G)\}$
- $X(2) = \{(u_1, u_2, u_3) | \text{ all } 3 \text{ edges } (u_1, u_2), (u_1, u_3) \text{ and } (u_2, u_3) \text{ belongs to } X(1) \}$

Observe that (X(0), X(1)) is the Cayley graph $Cay(\{0,1\}^k, S)$, thus it's a $\lambda_2 \leq 1 - \delta$ expander (we have proved this in Lecture 5), with low degree - $\forall u \in X(0)$ deg(u) = n, logarithmic in |X(0)|.

Fix some $u \in \{0,1\}^k$. We look on the vertices of the link $X_u(0) = \{u + s_1, u + s_2, ..., u + s_n\}$ and match them to A, by the bijection $h: X_u(0) \to A$ given by $h(u + s_i) = a_i$.

Claim 2.1. $u + s_i$, $u + s_j \in X_u(0)$ are connected by an edge in X(1) (and in $X_u(1)$) iff $dist_F(h(u + s_i), h(u + s_j)) = dist_F(a_i, a_j) = 2$.

Proof. (\Leftarrow): $dist_F(a_i, a_j) = 2$ means that \exists a constraint $x \in B$ neighboring both a_i and a_j . Let a_k be the third neighbor of x, which means that for any codeword w of C, $w_i + w_j + w_k = 0$ and thus $s_i + s_j + s_k = 0$. We get that $u + s_i = u + s_j + s_k$, therefore, by definition, $u + s_i$ and $u + s_j$ are connected by an edge in X(1).

(\Rightarrow) Assume $u + s_i, u + s_j \in X_u(0)$ are connected by an edge in X(1), this means that exists some $s_k \in S$ such that $u + s_i = u + s_j + s_k \Rightarrow s_i + s_j + s_k = 0$. We gets that in every code word $w \in C_F$, $w_i + w_j + w_k = 0$. Assuming the dependencies between the constraints in F don't create new linear constraints of three bits, we gets that there exists $x \in B$ adjacent to a_i, a_j and $a_k \Rightarrow dist_F(a_i, a_j) = 2$.

The meaning of this claim is that the link of every vertex represents a two steps walk in a random graph and thus also an expander.