High Dimensional Expanders

Lecture 6

Lecture by: Irit Dinur, Weizmann Institute of Science Scribe: Dafna Sadeh

In this lecture we define a variant of expansion that focuses on small set, called Small Set Expander and show a
randomized construction of such graphs. We demonstrate how to use this expander as a constraint graph in order to
build an error correcting code with a constant relative distance. Finally, we show a novel construction by Vadhan of
an HDX Cayley graph related to this code.

1 From expander to error correcting code

A bipartite graph (A, B, E) is (d, e) regular if for each a € A deg(a) = d and for each b € B deg(b) = e.

Definition 1.1. Small Set Expander. A (d,e) reqular bipartite graph (A, B, E) is an (a, h)-Small Set Expander (SSE)
ifVS C A st |S|<alA]l, |T(S)|>hd|S| whereT'(S)={be B|JacS. (a,b) € E}.
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Using the probabilistic method we construct a SSE.

Lemma 1.2. randomized construction of SSE. There exist d,ng € N s.t for any n > ng a random bipartite graph on
|A| =n and |B| = 3n = m chosen by letting each u € A choose d neighbors independently is a (o« = 1557, h = 2) SSE
with probability > 0.

Proof. Fix any S C A of size |S| =5 < an = 147 and T C B of size |T| =t = hd|S| = 2d|S|. The probability of a
" Bad event” that I'(S) C T is < ( )ds . We sum over the probability of all possible bad events and get that:

t
m

3 ("> Pr(Bad(S,T) for |S| = s and |T| = hds) < 1,
S

s=1

Which means that Pr(The graph is SSE) > 0.
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The first inequality is due do Stirling approximation, the 4th equality is by the definitions of ¢ and m and the 7th
and 8th inequality are for large enough ny and d. O

Remarks:

e If (A, B, F) is a random (d, e)-regular graph then the analysis is more subtle, but it still true. In our analysis

the B side isn’t necessarily regular. This makes the probabilities independent and easier to analyze.
o If we want to analyze the spectrum we can use Cheeger’s inequality.
e Friedman proved a near-optimal spectral bound: Ay < 2v/d — 1+ ¢

Claim 1.3. Unique Neighbor Claim. If a (d, e) regular bipartite graph (4, B, E), is an («, h)-small set expander for
h > 1/2, then every set S C A of size |S| < «|A| has a unique neighbor i.e Jv € B s.t v is adjacent to exactly one

element in S.

Proof. Fix S of size |S| < a|A| and let T' = T'(S). Assume by contradiction that every v € T has at least two neighbors
in S, then:
d|S| < 2nrd|S| < 2|T| < E(S,T) =d|S|.

O

We use (d,e) regular bipartite graphs F' = (A, B, E) as a constraint graphs to build a linear code. Assuming
|A] = n and |B| = m we define:

Cr={we{0,1}" | Vbe B. Y w; =0 mod 2}.

i~b
Each constraint is over e bits. Cr is a linear sub-space of dimension dim(Cr) <n —m = |A| — |B|.

Claim 1.4. from SSE to code. Assume (d,e) regular bipartite graph (A, B, F) is an («, h)-small set expander for

h > 1/2. Then Cp is a linear code of relative distance > «.
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Proof. Let w # w' € Cr and define S = {i € [n]|w; # w;}. Assume by contradiction that |S| < an, then S has a unique
wew); =1, we get that >°,  w; =, w;+1

which means that the constraint defined by v is unsatisfied either by w or by w’. A contradiction to w,w’ € C. O

neighbor v that adjacent to exactly one element in S. Since ),  (

Low Density Parity Check Codes (LDPC) [Gallager 63] The idea of building of a code from a set of sparse
constraints is well studied. This codes are called LDPC for low density parity check. Linear codes can be given by a

k x n generating matrix G over Fp as C = {mTG|m € F&} C F2.
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An alternative way to give a code is using the linear relations that the coordinates of a code word must satisfy.
Formally, define H, an n x [, (I = n — k) parity check matrix over Fo, C = {w € F§|wTH = 0} = left_ker(H).
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H is a "parity check” in that every column of H is a parity check constraint. Observe that the rows of G are the
basis of the words that satisfy the H-constraints, thus, span(col (H)) = (rows (G))". Each column of H is a linear
constraint on the words in C'. We say that H is an LDPC if it has a "few” 1’s it is.

Q: Can G be sparse?

A: No. Since each row of G is a code word, thus must have > dn 1’s in a code of relative distance ¢.
Q: Can H be sparse?

A: Yes. We need to find a sparse basis for (Rows(G))*

H can be viewed in a combinatorial way as a constraint graph.
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Let F' = (A, B, E) be a right 3-regular bipartite graph, A = {a1,az,...,a,}, |B| = 0.99n. We use F as a constraint
graph for the code Cp = {w € {0,1}"]>", , w; =0 Vv € B} - "the left kernel of F”. Let Gixyn for k > 0.01n, be a
generating matrix for C'p. Since each a; € A represents a bit in location ¢ in a code word, there is a matching between
A to the columns of G. Let S = {s1, 82, ..., 8, } be the columns of G.

We look at the Cayley graph Cay({0,1}*,5). Let X = X(0), X (1), X(2) be the "clique complex” of this graph.
X(0) = {0,1}*, |X(0)] = 200"

X (1) = {(u,v)|u = v+ s for some s € columns(G)}

X(2) = {(ug,uz2,u3)| all 3 edges (u1,uz), (u1,uz) and (ugz,us) belongs to X (1)}

Observe that (X (0), X (1)) is the Cayley graph Cay({0,1}*,5), thus it’s a Ay < 1 —§ expander (we have proved this
in Lecture 5), with low degree - Vu € X(0) deg(u) = n, logarithmic in | X (0)].
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Constraint graph Generating matrix Clique complex
F of acode G

Fix some u € {0,1}*. We look on the vertices of the link X, (0) = {u + s1,u + Sg,...,u + 8, } and match them to
A, by the bijection h : X,,(0) — A given by h(u + s;) = a;.

Claim 2.1. u+s;,u+s; € X,(0) are connected by an edge in X (1) (and in X, (1)) iff distp (h (w4 s;),h (u+s;)) =
distp(a;,a;) = 2.

Proof. («<): distp (a;,a;) = 2 means that 3 a constraint z € B neighboring both a; and a;. Let ai be the third
neighbor of z, which means that for any codeword w of C, w; + w; + wy = 0 and thus s; + s; + s, = 0. We get that
u+s; = u+ s;j + sy, therefore, by definition, u + s; and u + s; are connected by an edge in X (1).

(=) Assume u + s;,u+ s; € X,(0) are connected by an edge in X (1), this means that exists some s; € S such that
u+s; =u+s;+ s, = s;+5; + s, =0. We gets that in every code word w € Cp, w; + w; + wi = 0. Assuming the
dependencies between the constraints in F' don’t create new linear constraints of three bits, we gets that there exists

x € B adjacent to a;,a; and ai = distp(a;, a;) = 2. O

The meaning of this claim is that the link of every vertex represents a two steps walk in a random graph and thus

also an expander.
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