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Lecture 6

Lecture by: Irit Dinur, Weizmann Institute of Science Scribe: Dafna Sadeh

In this lecture we define a variant of expansion that focuses on small set, called Small Set Expander and show a

randomized construction of such graphs. We demonstrate how to use this expander as a constraint graph in order to

build an error correcting code with a constant relative distance. Finally, we show a novel construction by Vadhan of

an HDX Cayley graph related to this code.

1 From expander to error correcting code

A bipartite graph (A,B,E) is (d, e) regular if for each a ∈ A deg(a) = d and for each b ∈ B deg(b) = e.

Definition 1.1. Small Set Expander. A (d, e) regular bipartite graph (A,B,E) is an (α, h)-Small Set Expander (SSE)

if ∀S ⊆ A s.t |S| ≤ α|A|, |Γ(S)| ≥ hd|S| where Γ(S) = {b ∈ B|∃a ∈ S. (a, b) ∈ E}.

Using the probabilistic method we construct a SSE.

Lemma 1.2. randomized construction of SSE. There exist d, n0 ∈ N s.t for any n > n0 a random bipartite graph on

|A| = n and |B| = 3
4n = m chosen by letting each u ∈ A choose d neighbors independently is a (α = 1

100d , h = 3
4 ) SSE

with probability > 0.

Proof. Fix any S ⊂ A of size |S| = s ≤ αn = n
100d and T ⊂ B of size |T | = t = hd|S| = 3

4d|S|. The probability of a

”Bad event” that Γ(S) ⊆ T is ≤
(
t
m

)ds
. We sum over the probability of all possible bad events and get that:

αn∑
s=1

(
n

s

)
Pr(Bad(S, T ) for |S| = s and |T | = hds) < 1,

Which means that Pr(The graph is SSE) > 0.
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=
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(1.1)

The first inequality is due do Stirling approximation, the 4th equality is by the definitions of t and m and the 7th

and 8th inequality are for large enough n0 and d.

Remarks:

• If (A,B,E) is a random (d, e)-regular graph then the analysis is more subtle, but it still true. In our analysis

the B side isn’t necessarily regular. This makes the probabilities independent and easier to analyze.

• If we want to analyze the spectrum we can use Cheeger’s inequality.

• Friedman proved a near-optimal spectral bound: λ2 ≤ 2
√
d− 1 + ε

Claim 1.3. Unique Neighbor Claim. If a (d, e) regular bipartite graph (A,B,E), is an (α, h)-small set expander for

h > 1/2, then every set S ⊂ A of size |S| ≤ α|A| has a unique neighbor i.e ∃v ∈ B s.t v is adjacent to exactly one

element in S.

Proof. Fix S of size |S| ≤ α|A| and let T = Γ(S). Assume by contradiction that every v ∈ T has at least two neighbors

in S, then:

d|S| < 2hd|S| ≤ 2|T | ≤ E(S, T ) = d|S|.

We use (d, e) regular bipartite graphs F = (A,B,E) as a constraint graphs to build a linear code. Assuming

|A| = n and |B| = m we define:

CF = {w ∈ {0, 1}n | ∀b ∈ B.
∑
i∼b

wi = 0 mod 2}.

Each constraint is over e bits. CF is a linear sub-space of dimension dim(CF ) ≤ n−m = |A| − |B|.

Claim 1.4. from SSE to code. Assume (d, e) regular bipartite graph (A,B,E) is an (α, h)-small set expander for

h > 1/2. Then CF is a linear code of relative distance ≥ α.
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Proof. Let w 6= w′ ∈ CF and define S = {i ∈ [n]|wi 6= w′i}. Assume by contradiction that |S| < αn, then S has a unique

neighbor v that adjacent to exactly one element in S. Since
∑
i∼v(w ⊕ w′)i = 1, we get that

∑
i∼v wi =

∑
i∼v w

′
i + 1

which means that the constraint defined by v is unsatisfied either by w or by w′. A contradiction to w,w′ ∈ C.

Low Density Parity Check Codes (LDPC) [Gallager 63] The idea of building of a code from a set of sparse

constraints is well studied. This codes are called LDPC for low density parity check. Linear codes can be given by a

k × n generating matrix G over F2 as C = {mTG|m ∈ Fk2} ⊆ Fn2 .

An alternative way to give a code is using the linear relations that the coordinates of a code word must satisfy.

Formally, define H, an n× l, (l = n− k) parity check matrix over F2, C = {w ∈ Fn2 |wTH = 0} = left ker(H).

H is a ”parity check” in that every column of H is a parity check constraint. Observe that the rows of G are the

basis of the words that satisfy the H-constraints, thus, span(col (H)) = (rows (G))
⊥

. Each column of H is a linear

constraint on the words in C. We say that H is an LDPC if it has a ”few” 1’s it is.

Q: Can G be sparse?

A: No. Since each row of G is a code word, thus must have ≥ δn 1’s in a code of relative distance δ.

Q: Can H be sparse?

A: Yes. We need to find a sparse basis for (Rows(G))⊥

H can be viewed in a combinatorial way as a constraint graph.
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2 Construction of Cayley HDX - Salil Vadhan Nov’ 18

Let F = (A,B,E) be a right 3-regular bipartite graph, A = {a1, a2, ..., an}, |B| = 0.99n. We use F as a constraint

graph for the code CF = {w ∈ {0, 1}n|
∑
i∼v wi = 0 ∀v ∈ B} - ”the left kernel of F”. Let Gk×n for k ≥ 0.01n, be a

generating matrix for CF . Since each ai ∈ A represents a bit in location i in a code word, there is a matching between

A to the columns of G. Let S = {s1, s2, ..., sn} be the columns of G.

We look at the Cayley graph Cay({0, 1}k, S). Let X = X(0), X(1), X(2) be the ”clique complex” of this graph.

X(0) = {0, 1}k, |X(0)| ≥ 20.01n

X(1) = {(u, v)|u = v + s for some s ∈ columns(G)}
X(2) = {(u1, u2, u3)| all 3 edges (u1, u2), (u1, u3) and (u2, u3) belongs to X(1)}
Observe that (X (0) , X (1)) is the Cayley graph Cay({0, 1}k, S), thus it’s a λ2 ≤ 1− δ expander (we have proved this

in Lecture 5), with low degree - ∀u ∈ X(0) deg(u) = n, logarithmic in |X(0)|.

Fix some u ∈ {0, 1}k. We look on the vertices of the link Xu(0) = {u+ s1, u+ s2, ..., u+ sn} and match them to

A, by the bijection h : Xu(0)→ A given by h(u+ si) = ai.

Claim 2.1. u+ si, u+ sj ∈ Xu(0) are connected by an edge in X(1) (and in Xu(1)) iff distF (h (u+ si) , h (u+ sj)) =

distF (ai, aj) = 2.

Proof. (⇐): distF (ai, aj) = 2 means that ∃ a constraint x ∈ B neighboring both ai and aj . Let ak be the third

neighbor of x, which means that for any codeword w of C, wi + wj + wk = 0 and thus si + sj + sk = 0. We get that

u+ si = u+ sj + sk, therefore, by definition, u+ si and u+ sj are connected by an edge in X(1).

(⇒) Assume u + si, u+ sj ∈ Xu(0) are connected by an edge in X(1), this means that exists some sk ∈ S such that

u+ si = u+ sj + sk ⇒ si + sj + sk = 0. We gets that in every code word w ∈ CF , wi + wj + wk = 0. Assuming the

dependencies between the constraints in F don’t create new linear constraints of three bits, we gets that there exists

x ∈ B adjacent to ai, aj and ak ⇒ distF (ai, aj) = 2.

The meaning of this claim is that the link of every vertex represents a two steps walk in a random graph and thus

also an expander.
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