In this lecture we define a variant of expansion that focuses on small set, called Small Set Expander and show a randomized construction of such graphs. We demonstrate how to use this expander as a constraint graph in order to build an error correcting code with a constant relative distance. Finally, we show a novel construction by Vadhan of an HDX Cayley graph related to this code.

1 From expander to error correcting code

A bipartite graph \((A, B, E)\) is \((d, e)\)-regular if for each \(a \in A\) \(\deg(a) = d\) and for each \(b \in B\) \(\deg(b) = e\).

Definition 1.1. Small Set Expander. A \((d, e)\)-regular bipartite graph \((A, B, E)\) is an \((\alpha, h)\)-Small Set Expander (SSE) if \(\forall S \subseteq A \) s.t \(|S| \leq \alpha |A|\), \(|\Gamma(S)| \geq h\alpha |S|\) where \(\Gamma(S) = \{b \in B | \exists a \in S. \ (a, b) \in E\}\).

Using the probabilistic method we construct a SSE.

Lemma 1.2. randomized construction of SSE. There exist \(d, n_0 \in \mathbb{N}\) s.t for any \(n > n_0\) a random bipartite graph on \(|A| = n\) and \(|B| = \frac{3}{4}n = m\) chosen by letting each \(u \in A\) choose \(d\) neighbors independently is a \((\alpha = \frac{1}{100d}, h = \frac{3}{4})\) SSE with probability \(\geq 0\).

Proof. Fix any \(S \subset A\) of size \(|S| = s \leq \alpha n = \frac{n}{100d}\) and \(T \subset B\) of size \(|T| = t = h\alpha |S| = \frac{3}{4}d|S|\). The probability of a "Bad event" that \(\Gamma(S) \subseteq T\) is \(\leq \left(\frac{t}{m}\right)^{ds}\). We sum over the probability of all possible bad events and get that:

\[
\sum_{s=1}^{\alpha n} \left(\frac{n}{s}\right)\Pr(Bad(S, T) \text{ for } |S| = s \text{ and } |T| = hds) < 1,
\]

Which means that \(\Pr(\text{The graph is SSE}) > 0\).
The first inequality is due to Stirling approximation, the 4th equality is by the definitions of t and m and the 7th and 8th inequality are for large enough n_0 and d.

Remarks:

- If (A, B, E) is a random (d, e)-regular graph then the analysis is more subtle, but it still true. In our analysis the B side isn’t necessarily regular. This makes the probabilities independent and easier to analyze.

- If we want to analyze the spectrum we can use Cheeger’s inequality.

- Friedman proved a near-optimal spectral bound: $\lambda_2 \leq 2\sqrt{d - 1} + \epsilon$

Claim 1.3. Unique Neighbor Claim. If a (d, e) regular bipartite graph (A, B, E), is an (α, h)-small set expander for $h > 1/2$, then every set $S \subset A$ of size $|S| \leq \alpha |A|$ has a unique neighbor i.e. $\exists v \in B$ s.t v is adjacent to exactly one element in S.

Proof. Fix S of size $|S| \leq \alpha |A|$ and let $T = \Gamma(S)$. Assume by contradiction that every $v \in T$ has at least two neighbors in S, then:

$$d|S| < 2hd|S| \leq 2|T| \leq E(S, T) = d|S|.$$

We use (d, e) regular bipartite graphs $F = (A, B, E)$ as a constraint graphs to build a linear code. Assuming $|A| = n$ and $|B| = m$ we define:

$$C_F = \{w \in \{0, 1\}^n \mid \forall b \in B. \sum_{i \sim b} w_i = 0 \mod 2\}.$$

Each constraint is over e bits. C_F is a linear sub-space of dimension $\dim(C_F) \leq n - m = |A| - |B|$.

Claim 1.4. Assume (d, e) regular bipartite graph (A, B, E) is an (α, h)-small set expander for $h > 1/2$. Then C_F is a linear code of relative distance $\geq \alpha$.

Proof. Let \(w \neq w' \in \mathbb{C}_F \) and define \(S = \{ i \in [n] | w_i \neq w'_i \} \). Assume by contradiction that \(|S| < \alpha n \), then \(S \) has a unique neighbor \(v \) that adjacent to exactly one element in \(S \). Since \(\sum_{i \sim v} (w \oplus w')_i = 1 \), we get that \(\sum_{i \sim v} w_i = \sum_{i \sim v} w'_i + 1 \) which means that the constraint defined by \(v \) is unsatisfied either by \(w \) or by \(w' \). A contradiction to \(w, w' \in C \). \(\square \)

Low Density Parity Check Codes (LDPC) [Gallager 63] The idea of building of a code from a set of sparse constraints is well studied. This codes are called LDPC for low density parity check. Linear codes can be given by a \(k \times n \) generating matrix \(G \) over \(\mathbb{F}_2 \) as
\[
C = \{ m^T G | m \in \mathbb{F}_2^k \} \subseteq \mathbb{F}_2^n.
\]

An alternative way to give a code is using the linear relations that the coordinates of a code word must satisfy. Formally, define \(H \), an \(n \times (l = n - k) \) parity check matrix over \(\mathbb{F}_2 \), \(C = \{ w \in \mathbb{F}_2^n | w^T H = 0 \} = \ker(H) \).

\[
H \text{ is a "parity check" in that every column of } H \text{ is a parity check constraint. Observe that the rows of } G \text{ are the basis of the words that satisfy the } H\text{-constraints, thus, span(col}(H)) = (\text{rows}(G))^\perp. \text{ Each column of } H \text{ is a linear constraint on the words in } C. \text{ We say that } H \text{ is an LDPC if it has a "few" 1's it is.}
\]

Q: Can \(G \) be sparse?
A: No. Since each row of \(G \) is a code word, thus must have \(\geq \delta n \) 1’s in a code of relative distance \(\delta \).

Q: Can \(H \) be sparse?
A: Yes. We need to find a sparse basis for \((\text{Rows}(G))^\perp \).

\(H \) can be viewed in a combinatorial way as a constraint graph.
2 Construction of Cayley HDX - Salil Vadhan Nov’ 18

Let \(F = (A, B, E) \) be a right 3-regular bipartite graph, \(A = \{a_1, a_2, \ldots, a_n\} \), \(|B| = 0.99n \). We use \(F \) as a constraint graph for the code \(C_F = \{ w \in \{0,1\}^n \mid \sum_{i=0}^{n} w_i = 0 \; \forall v \in B \} \) -"the left kernel of \(F \)." Let \(G_{k \times n} \) for \(k \geq 0.01n \), be a generating matrix for \(C_F \). Since each \(a_i \in A \) represents a bit in location \(i \) in a code word, there is a matching between \(A \) to the columns of \(G \). Let \(S = \{s_1, s_2, \ldots, s_n\} \) be the columns of \(G \).

We look at the Cayley graph \(\text{Cay}(\{0,1\}^k, S) \). Let \(X = X(0), X(1), X(2) \) be the "clique complex" of this graph. \(X(0) = \{0,1\}^k \), \(|X(0)| \geq 2^{0.01n} \)

\(X(1) = \{(u, v) | u = v + s \; \text{for some} \; s \in \text{columns}(G)\} \)

\(X(2) = \{(u_1, u_2, u_3) \mid \text{all 3 edges} (u_1, u_2), (u_1, u_3) \; \text{and} \; (u_2, u_3) \; \text{belongs to} \; X(1)\} \)

Observe that \((X(0), X(1)) \) is the Cayley graph \(\text{Cay}(\{0,1\}^k, S) \), thus it’s a \(\lambda_2 \leq 1 - \delta \) expander (we have proved this in Lecture 5), with low degree - \(\forall u \in X(0) \; \text{deg}(u) = n \), logarithmic in \(|X(0)| \).

![Diagram](image.png)

Claim 2.1. \(u + s_i, u + s_j \in X_u(0) \) are connected by an edge in \(X(1) \) (and in \(X_u(1) \)) iff \(\text{dist}_F(h(u + s_i), h(u + s_j)) = \text{dist}_F(a_i, a_j) = 2 \).

Proof. \((=)\) \(\text{dist}_F(a_i, a_j) = 2 \) means that \(\exists \) a constraint \(x \in B \) neighboring both \(a_i \) and \(a_j \). Let \(a_k \) be the third neighbor of \(x \), which means that for any codeword \(w \) of \(C, w_i + w_j + w_k = 0 \) and thus \(s_i + s_j + s_k = 0 \). We get that \(u + s_i = u + s_j + s_k \), therefore, by definition, \(u + s_i \) and \(u + s_j \) are connected by an edge in \(X(1) \).

\((\Rightarrow)\) Assume \(u + s_i, u + s_j \in X_u(0) \) are connected by an edge in \(X(1) \), this means that exists some \(s_k \in S \) such that \(u + s_i = u + s_j + s_k \Rightarrow s_i + s_j + s_k = 0 \). We gets that in every code word \(w \in C_F, w_i + w_j + w_k = 0 \). Assuming the dependencies between the constraints in \(F \) don’t create new linear constraints of three bits, we gets that there exists \(x \in B \) adjacent to \(a_i, a_j \) and \(a_k \Rightarrow \text{dist}_F(a_i, a_j) = 2 \).

The meaning of this claim is that the link of every vertex represents a two steps walk in a random graph and thus also an expander.