High Dimensional Expanders
Lecture 7: Coboundry Expanders

Instructor: Irit Dinur Scribe: Boaz Menuhin

In this lecture we present coboundry expansion. We will first introduce the edge expansion, sometimes called
the Cheeger Constant which is a special case of coboundary expansion. Afterward, we will present key terms related to
Homology & Cohomology. We then introduce Coboundary Expansion by describing coboundary of a graph. Finally,

we will present briefly several Context & Applications for research of coboundary expansion.

1 Conductance

Definition 1.1 (Cheeger Constant). Let G = (V, E) a d-regular graph, and S C V s.t. 0 < |5] < ILQ‘ Denote
E(S,S) ={e € E|len S| =1}, then the Conductance of G is defined as
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Theorem 1.2 (Cheeger-Alon-Milman-Dodziuk). Let G be a graph and let Ao the second largest eigenvalue of the

normalized adjacency operator of G

1— X
2
He < +/2(1 = )\g) ”Harder” side by Alon, Dodziuk

< Hg ”FEasier” side by Alon-Milman

Combining both, we get that

1—A
5 2 < Hg <2(1-\,).

Our interpretation is that a lower bound on the spectral gap (equivalently: an upper bound on A2) means a lower
bound on the conductance of G. The best approximation algorithm known for conductance gives \/m factor, due
to Arora-Rao-Vzirani [ARV09].

Open Question: Is there a conductance approximation algorithm with a constant factor (i.e. better than \/W )?

2 Homology & Cohomology

So far we looked at specific functions from faces of X (i) to the reals, and in particular at f : V — R. We will now

look at functions from X (i) to Fo = {0,1}. More precisely, let i-cochain be
Ci={f:X@#) —{0,1}} “Cochains”

Where the cochain C_; is the set of the two constant functions from the empty set to either 0 or 1, i.e. C_; = {f :
0 — {0,1}} = {0,1}. Notice that every function f € C; can be looked at as representing a subset of faces in X ().
It can be seen by considering a set S C X (i) that is defined by {s € X (¢)|f(s) = 1}. We will consider the following

operators:
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Definition 2.1 (Boundary and Coboundary operators).

Boundary Coboundary
82- : CZ — Cifl 57, : C’Z — Ci+1
VSeX(i—1) 0f(S)= > f(T) VAEX(i+1) 6if(A):= Y f(T)
TO8 TCA
TEeX (3) TeX (i)

(All summation is in the field Fs).

Examples:
fX(1) —{0,1}
af : X(0) — {0,1}
df : X(2) — {0,1}
Figure 1: Boundary of a function on edges
S
a b ¢
@
d / \ e
@ @

(a) f(e) =1 on red edges, 0 otherwise. df(v) =1
on red vertices where the sum (in Z3) equals 1, 0
otherwise

(b) Let S C X(0) and g(v) = 1 for v € S, 0 other-
wise. dg(e) =1 for edges in E(S,S). For any other
edge e = (u,v), g(u) + g(v) = 0.

Lemma 2.2. §;11 0d; =0 and similarly 0; 0 0;41 =0

Proof. Enough to show that for every face A € X (i +1) 9914 = 0, where 14 is indicator of A. Let A € X(i+ 1) and
14 as described. Then for every T' € X (i — 1) one of the two follows:

e T ¢ A: In that case 0014(T) = 0 by definition.

e T C A: Then there exists two vertices vy, vo such that T'U {v1,v2} = A, and we get that

A1a(A\ {v1}) = OLA(T U {u1}) = 1
A1a(A\ {va}) = AL4(T U {wn}) = 1

AZTU{Ul,’UQ}
[

TU{vi} @ @ T U {v}
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Which implies that

0014(T) = > 91a(TU{v})

veXr(0)
= > oa(Tufv})+ > d14(T U {v})
ve{vy,v2} vEXT(0)—{vi,v2}
=0
=014(TU{v1}) + 014(T U{v2})
=1+1=0
Where the last equality is as all summation is modulo 2.
The proof for §6 = 0 is similar.
O
Definition 2.3.
B; =Im0;11 C C; Boundary B'=Imé;_, C C; Coboundary
Z; =kerd; C C; Cycle 7 = kerd; C C; Cocycle
H;,=7;/B; Homology H'=7'/B' Cohomology

Corollary 2.4. It follows from §;41 08; = 0, that Im ;1 C ker§; i.e. B* C Z'. Similarly 0; o 8;.1 = 0, implies that
Im 0;11 C ker 0; that is B; C Z;. Therefor it makes sense to define H; and H*.

Example: Cohomology of graph

Let G = (V, E), let’s calculate H° = Z°/B°. Notice that C_; is the family of functions from the empty set to {0, 1}.
Therefore, the coboundary B is the set of constant functions on the vertices, i.e. B =Imd_; = {1,0}. Let f € Z°
ie. f:V — Zy and dpf is the constant zero function on edges. i.e. for every edge (u,v) = e € E it holds that
Sof(e) = f(u) + f(v) = 0 & f(u) = f(v) for every u,v € V. We can conclude that f € Z° is constant on every

connected component in V. Conclusion: Z° = BY iff G is connected. In this case H? = {0} and dim H® = 0.

Definition 2.5. X is k-chomologically-connected if for every i < k it holds that Z* = B* (H* = {0} ).

3 Coboundary Expansion

We saw that H? = {0} iff the graph is connected. We now study a more quantitative measure to connectivity, called
coboundary expansion. Let f : V' — {0,1} and denote S = {v € V s.t. f(v) = 1} and equivalently for f(v) = 0 denote
S={veVst f(v)=0}. Asdiscussed, dpf(e) = 1 if and only if [eN S| = 1, i.e. dof is the indicator of the edges of
the cut (S, S). For any function h € C; define

wi(h) = > wi(o).

o:h(o)=1

This is equivalent to the expectation of h(o) when choosing o ar random according to II;. For the uniform distribution
over X (1) this is

_ [{o € X(1) st. h(o) =1]

wilh) X0
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Let us now look at the ratio between the weight of a function to the weight of its coboundary

E(5,5)
wt (o f) _ _IE]
wi(r) Bl
This is exactly the conductance of G as per Definition 1.1.
Recall: The Cheeger Constant:
|E(S,5) |E(S,9)]
H,= min Bl _ i — Bl
g Scv 18] 9£S#V min(|S].[S])
0<|S|<IVI2 V] V]

Notice: min(|S/|,|S]) is the hamming distance of the indicator function for S (equivalently S ) from the all 1s all Os
function. i.e. the distance of S from V and 0.

Notation: Let f, f’ be two functions such that f, f' : D — R. We denote dist(f, f') as the fraction of disagreeing
inputs between f and f’. And for a set A of functions from D to R, denote dist(f, A) = ming ¢4 dist(f, f').

Definition 3.1 (Coboundary expansion).

he— min Ok
fecy\Bx dist(f, B¥)

Notice that the coboundary expansion for k = 0 i.e. hg is in fact the normalized Cheeger constant. This comes
from the fact that B° consists of the all 1s and all Os functions. This can be easily seen by moving from any function
f to the set S ={v: f(v) =1}.

|E(S.5)|
wt(dof) . ]|

h frd 1 _— = _—

07 JeBo dist(f, BY)  f¥ho wmin(|51. 151
Remark 3.2. If hj, = 0 then there exists a function f € Cy, — B* s.t. 0,.f =0 i.e. f € Z*. f is also not in B, so
we get f € Z¥/B* = H* so we can conclude that H* # 0. To summarize hy =0 < H* # 0.

4 Context & Applications

1. Linial and Meshulam [LMO03] wanted to learn expansion properties of random complexes, this is a generalization
of G(n,p) which is a graph on n vertices with independent probability p for each edge’s existence. They found

k-log(n)
n

that connectivity of random complex happens in probability , this result comes from understanding the

coboundary expansion of the complete complex.
2. Gromov [G10] introduced the topological overlap property.

For start, let’s consider a different notion of conductance. The geometric idea behind the following definition is
that for every drawing of vertices on a line, and edges as intervals between vertices then at least an « fraction

of the edges (intervals) will overlap.
Generalizing this idea to higher dimensions yield the topological overlap definition

Definition 4.1. We say that a point vo € R? pierces a face S € X(I) in embedding M : X(0) — R? ifxg

mapping
resides is in the convex hull of M(S)

Example: for an embedding M of X (0) to R, an edge (u,v) induces an interval between M (u) and M (v) and
every point in the range [M(u), M (v)] pierces the edge (u,v).
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Definition 4.2. We say that X9 has the topological overlap property if for every embedding of X(0) — R4

mapping

there exists zg € RY that pierces c-fraction of X (d).

Claim 4.3. If G is a graph with conductance > « then it has the geometric overlap property.

Proof. Embed vertices on real line and pierce in the median. O

Theorem 4.4. There exists a point that pierces a constant fraction of topological triangles.

How: if X is a complex with coboundary expansion > ¢ then X satisfies topological overlap.

3. Kaufman and Lubotzky [KL13] relate to property testing and locally testable codes.

C'is a linear locally testable code if C = {x € {0,1}"|Hxz = 0} where H is parity check matrix and H is ”special”

in the sense that every row in H has < ¢ entries of 1.
If w e {0,1}" s.t. wt(Hw) < € then there exists x € C' s.t. dist(w,z) < e.

Emphasis: Satisfy all equations

To+x1 +a2=1

I0+IL'2 + I3 = 1

To+T100 + T101 = 1

To+x101 + 1 =1

And let’s analyze this in term of coboundary expansion. Consider a function f : X (1) — {0, 1} i.e. a boolean
function on edges. 1 f : X(2) — {0,1} will output 1 for triangles that has an odd number of edges for which f

gives 1. Our code would consist of B!.
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