
High Dimensional Expanders

Lecture 7: Coboundry Expanders

Instructor: Irit Dinur Scribe: Boaz Menuhin

In this lecture we present coboundry expansion. We will first introduce the edge expansion, sometimes called

the Cheeger Constant which is a special case of coboundary expansion. Afterward, we will present key terms related to

Homology & Cohomology. We then introduce Coboundary Expansion by describing coboundary of a graph. Finally,

we will present briefly several Context & Applications for research of coboundary expansion.

1 Conductance

Definition 1.1 (Cheeger Constant). Let G = (V,E) a d-regular graph, and S ⊂ V s.t. 0 < |S| ≤ |V |
2 . Denote

E(S, S) = {e ∈ E||e ∩ S| = 1}, then the Conductance of G is defined as

HG = min
S

|E(S,S)|
|E|
|S|
|V |

Theorem 1.2 (Cheeger-Alon-Milman-Dodziuk). Let G be a graph and let λ2 the second largest eigenvalue of the

normalized adjacency operator of G

1− λ2
2

≤ HG ”Easier” side by Alon-Milman

HG ≤
√

2(1− λ2) ”Harder” side by Alon, Dodziuk

Combining both, we get that
1− λ2

2
≤ HG ≤

√
2(1− λ2).

Our interpretation is that a lower bound on the spectral gap (equivalently: an upper bound on λ2) means a lower

bound on the conductance of G. The best approximation algorithm known for conductance gives
√

log(n) factor, due

to Arora-Rao-Vzirani [ARV09].

Open Question: Is there a conductance approximation algorithm with a constant factor (i.e. better than
√
log(n))?

2 Homology & Cohomology

So far we looked at specific functions from faces of X(i) to the reals, and in particular at f : V → R. We will now

look at functions from X(i) to F2 = {0, 1}. More precisely, let i-cochain be

Ci = {f : X(i)→ {0, 1}} “Cochains”

Where the cochain C−1 is the set of the two constant functions from the empty set to either 0 or 1, i.e. C−1 = {f :

∅ → {0, 1}} ∼= {0, 1}. Notice that every function f ∈ Ci can be looked at as representing a subset of faces in X(i).

It can be seen by considering a set S ⊆ X(i) that is defined by {s ∈ X(i)|f(s) = 1}. We will consider the following

operators:
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Definition 2.1 (Boundary and Coboundary operators).

Boundary Coboundary

∂i : Ci → Ci−1 δi : Ci → Ci+1

∀S ∈ X(i− 1) ∂if(S) :=
∑
T⊃S
T∈X(i)

f(T ) ∀A ∈ X(i+ 1) δif(A) :=
∑
T⊂A
T∈X(i)

f(T )

(All summation is in the field F2).

Examples:

f : X(1)→ {0, 1}

∂f : X(0)→ {0, 1}

δf : X(2)→ {0, 1}

Figure 1: Boundary of a function on edges
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(a) f(e) = 1 on red edges, 0 otherwise. ∂f(v) = 1
on red vertices where the sum (in Z2) equals 1, 0
otherwise
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(b) Let S ⊆ X(0) and g(v) = 1 for v ∈ S, 0 other-
wise. δg(e) = 1 for edges in E(S, S). For any other
edge e = (u, v), g(u) + g(v) = 0.

Lemma 2.2. δi+1 ◦ δi = 0 and similarly ∂i ◦ ∂i+1 = 0

Proof. Enough to show that for every face A ∈ X(i+ 1) ∂∂1A = 0, where 1A is indicator of A. Let A ∈ X(i+ 1) and

1A as described. Then for every T ∈ X(i− 1) one of the two follows:

• T 6⊂ A: In that case ∂∂1A(T ) = 0 by definition.

• T ⊂ A: Then there exists two vertices v1, v2 such that T ∪ {v1, v2} = A, and we get that

∂1A(A \ {v1}) = ∂1A(T ∪ {v1}) = 1

∂1A(A \ {v2}) = ∂1A(T ∪ {v2}) = 1

A = T ∪ {v1, v2}

T ∪ {v1} T ∪ {v2}

T
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Which implies that

∂∂1A(T ) =
∑

v∈XT (0)

∂1A(T ∪ {v})

=
∑

v∈{v1,v2}

∂1A(T ∪ {v}) +
∑

v∈XT (0)−{v1,v2}

∂1A(T ∪ {v})

︸ ︷︷ ︸
=0

= ∂1A(T ∪ {v1}) + ∂1A(T ∪ {v2})

= 1 + 1 = 0

Where the last equality is as all summation is modulo 2.

The proof for δδ = 0 is similar.

Definition 2.3.

Bi = Im ∂i+1 ⊂ Ci Boundary Bi = Im δi−1 ⊂ Ci Coboundary

Zi = ker ∂i ⊂ Ci Cycle Zi = ker δi ⊂ Ci Cocycle

Hi = Zi/Bi Homology Hi = Zi/Bi Cohomology

Corollary 2.4. It follows from δi+1 ◦ δi = 0, that Im δi+1 ⊆ ker δi i.e. Bi ⊆ Zi. Similarly ∂i ◦ ∂i+1 = 0, implies that

Im ∂i+1 ⊆ ker ∂i that is Bi ⊆ Zi. Therefor it makes sense to define Hi and Hi.

Example: Cohomology of graph

Let G = (V,E), let’s calculate H0 = Z0/B0. Notice that C−1 is the family of functions from the empty set to {0, 1}.
Therefore, the coboundary B0 is the set of constant functions on the vertices, i.e. B0 = Im δ−1 = {1, 0}. Let f ∈ Z0

i.e. f : V → Z2 and δ0f is the constant zero function on edges. i.e. for every edge (u, v) = e ∈ E it holds that

δ0f(e) = f(u) + f(v) = 0 ⇔ f(u) = f(v) for every u, v ∈ V . We can conclude that f ∈ Z0 is constant on every

connected component in V . Conclusion: Z0 = B0 iff G is connected. In this case H0 = {0} and dimH0 = 0.

Definition 2.5. X is k-chomologically-connected if for every i ≤ k it holds that Zi = Bi (Hi = {0}).

3 Coboundary Expansion

We saw that H0 = {0} iff the graph is connected. We now study a more quantitative measure to connectivity, called

coboundary expansion. Let f : V → {0, 1} and denote S = {v ∈ V s.t. f(v) = 1} and equivalently for f(v) = 0 denote

S = {v ∈ V s.t. f(v) = 0} . As discussed, δ0f(e) = 1 if and only if |e∩ S| = 1, i.e. δ0f is the indicator of the edges of

the cut (S, S). For any function h ∈ C1 define

wt(h) =
∑

σ:h(σ)=1

wt(σ).

This is equivalent to the expectation of h(σ) when choosing σ ar random according to Πi. For the uniform distribution

over X(1) this is

wt(h) =
|{σ ∈ X(1) s.t. h(σ) = 1|

|X(1)|
.
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Let us now look at the ratio between the weight of a function to the weight of its coboundary

wt(δ0f)

wt(f)
=

E(S,S)
|E|
|S|
|V |

.

This is exactly the conductance of G as per Definition 1.1.

Recall: The Cheeger Constant:

Hg = min
S⊂V

0≤|S|≤|V |/2

|E(S,S)
|E|
|S|
|V |

= min
∅6=S 6=V

|E(S,S)|
|E|

min(|S|,|S|)
|V |

.

Notice: min(|S|, |S|) is the hamming distance of the indicator function for S (equivalently S ) from the all 1s all 0s

function. i.e. the distance of S from V and ∅.
Notation: Let f, f ′ be two functions such that f, f ′ : D → R. We denote dist(f, f ′) as the fraction of disagreeing

inputs between f and f ′. And for a set A of functions from D to R, denote dist(f,A) = minf ′∈A dist(f, f ′).

Definition 3.1 (Coboundary expansion).

hk = min
f∈Ck\Bk

wt(δkf)

dist(f,Bk)
.

Notice that the coboundary expansion for k = 0 i.e. h0 is in fact the normalized Cheeger constant. This comes

from the fact that B0 consists of the all 1s and all 0s functions. This can be easily seen by moving from any function

f to the set S = {v : f(v) = 1}.

h0 = min
f /∈B0

wt(δ0f)

dist(f,B0)
= min
f 6=1,0

|E(S,S)|
|E|

min(|S|,|S|)
|V |

Remark 3.2. If hk = 0 then there exists a function f ∈ Ck − Bk s.t. δkf = 0 i.e. f ∈ Zk. f is also not in Bk, so

we get f ∈ Zk/Bk = Hk so we can conclude that Hk 6= ∅. To summarize hk = 0⇔ Hk 6= 0.

4 Context & Applications

1. Linial and Meshulam [LM03] wanted to learn expansion properties of random complexes, this is a generalization

of G(n, p) which is a graph on n vertices with independent probability p for each edge’s existence. They found

that connectivity of random complex happens in probability k·log(n)
n , this result comes from understanding the

coboundary expansion of the complete complex.

2. Gromov [G10] introduced the topological overlap property.

For start, let’s consider a different notion of conductance. The geometric idea behind the following definition is

that for every drawing of vertices on a line, and edges as intervals between vertices then at least an α fraction

of the edges (intervals) will overlap.

Generalizing this idea to higher dimensions yield the topological overlap definition

Definition 4.1. We say that a point x0 ∈ Rd pierces a face S ∈ X(I) in embedding M : X(0) ↪→
mapping

Rd if x0

resides is in the convex hull of M(S)

Example: for an embedding M of X(0) to R, an edge (u, v) induces an interval between M(u) and M(v) and

every point in the range [M(u),M(v)] pierces the edge (u, v).
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Definition 4.2. We say that X(d) has the topological overlap property if for every embedding of X(0) ↪→
mapping

Rd

there exists x0 ∈ Rd that pierces c-fraction of X(d).

Claim 4.3. If G is a graph with conductance > α then it has the geometric overlap property.

Proof. Embed vertices on real line and pierce in the median.

Theorem 4.4. There exists a point that pierces a constant fraction of topological triangles.

How: if X is a complex with coboundary expansion > c then X satisfies topological overlap.

3. Kaufman and Lubotzky [KL13] relate to property testing and locally testable codes.

C is a linear locally testable code if C = {x ∈ {0, 1}n|Hx = 0} where H is parity check matrix and H is ”special”

in the sense that every row in H has ≤ q entries of 1.

If w ∈ {0, 1}n s.t. wt(Hw) < ε then there exists x ∈ C s.t. dist(w, x) < ε.

Emphasis: Satisfy all equations

x0+x1 + x2 = 1

x0+x2 + x3 = 1

...

x0+x100 + x101 = 1

x0+x101 + x1 = 1

And let’s analyze this in term of coboundary expansion. Consider a function f : X(1) → {0, 1} i.e. a boolean

function on edges. δ1f : X(2)→ {0, 1} will output 1 for triangles that has an odd number of edges for which f

gives 1. Our code would consist of B1.
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