High Dimensional Expanders

Lecture 7: Coboundry Expanders

Instructor: Irit Dinur

Scribe: Boaz Menuhin

In this lecture we present **coboundry expansion**. We will first introduce the edge expansion, sometimes called the Cheeger Constant which is a special case of coboundary expansion. Afterward, we will present key terms related to Homology & Cohomology. We then introduce Coboundary Expansion by describing coboundary of a graph. Finally, we will present briefly several Context & Applications for research of coboundary expansion.

1 Conductance

Definition 1.1 (Cheeger Constant). Let G = (V, E) a d-regular graph, and $S \subset V$ s.t. $0 < |S| \le \frac{|V|}{2}$. Denote $E(S, \overline{S}) = \{e \in E | |e \cap S| = 1\}$, then the **Conductance of** G is defined as

$$H_G = \min_{S} \frac{\frac{|E(S,\overline{S})|}{|E|}}{\frac{|S|}{|V|}}$$

Theorem 1.2 (Cheeger-Alon-Milman-Dodziuk). Let G be a graph and let λ_2 the second largest eigenvalue of the normalized adjacency operator of G

 $\begin{array}{l} \displaystyle \frac{1-\lambda_2}{2} \leq H_G \qquad \text{"Easier" side by Alon-Milman} \\ \displaystyle H_G \leq \sqrt{2(1-\lambda_2)} \qquad \text{"Harder" side by Alon, Dodziuk} \end{array}$

Combining both, we get that

$$\frac{1-\lambda_2}{2} \le H_G \le \sqrt{2(1-\lambda_2)}.$$

Our interpretation is that a lower bound on the spectral gap (equivalently: an upper bound on λ_2) means a lower bound on the conductance of G. The best approximation algorithm known for conductance gives $\sqrt{\log(n)}$ factor, due to Arora-Rao-Vzirani [**ARV09**].

Open Question: Is there a conductance approximation algorithm with a constant factor (i.e. better than $\sqrt{log(n)}$)?

2 Homology & Cohomology

So far we looked at specific functions from faces of X(i) to the reals, and in particular at $f: V \to \mathbb{R}$. We will now look at functions from X(i) to $\mathbb{F}_2 = \{0, 1\}$. More precisely, let *i*-cochain be

$$C_i = \{f : X(i) \to \{0, 1\}\}$$
 "Cochains"

Where the cochain C_{-1} is the set of the two constant functions from the empty set to either 0 or 1, i.e. $C_{-1} = \{f : \emptyset \to \{0,1\}\} \cong \{0,1\}$. Notice that every function $f \in C_i$ can be looked at as representing a subset of faces in X(i). It can be seen by considering a set $S \subseteq X(i)$ that is defined by $\{s \in X(i) | f(s) = 1\}$. We will consider the following operators: Definition 2.1 (Boundary and Coboundary operators).

Boundary

$\begin{aligned} \partial_i &: C_i \to C_{i-1} \\ \forall S \in X(i-1) \quad \partial_i f(S) &:= \sum_{\substack{T \supset S \\ T \in X(i)}} f(T) \end{aligned}$

(All summation is in the field \mathbb{F}_2).

Examples:

$$f: X(1) \to \{0, 1\}$$
$$\partial f: X(0) \to \{0, 1\}$$
$$\delta f: X(2) \to \{0, 1\}$$

Coboundary

 $\delta_i: C_i \to C_{i+1}$

 $\forall A \in X(i+1) \quad \delta_i f(A) := \sum_{\substack{T \subset A \\ T \in X(i)}} f(T)$

Figure 1: Boundary of a function on edges

(a) f(e) = 1 on red edges, 0 otherwise. $\partial f(v) = 1$ on red vertices where the sum (in \mathbb{Z}_2) equals 1, 0 otherwise

(b) Let $S \subseteq X(0)$ and g(v) = 1 for $v \in S$, 0 otherwise. $\delta g(e) = 1$ for edges in $E(S, \overline{S})$. For any other edge e = (u, v), g(u) + g(v) = 0.

Lemma 2.2. $\delta_{i+1} \circ \delta_i = 0$ and similarly $\partial_i \circ \partial_{i+1} = 0$

Proof. Enough to show that for every face $A \in X(i+1)$ $\partial \partial 1_A = 0$, where 1_A is indicator of A. Let $A \in X(i+1)$ and 1_A as described. Then for every $T \in X(i-1)$ one of the two follows:

- $T \not\subset A$: In that case $\partial \partial 1_A(T) = 0$ by definition.
- $T \subset A$: Then there exists two vertices v_1, v_2 such that $T \cup \{v_1, v_2\} = A$, and we get that

$$\partial 1_A(A \setminus \{v_1\}) = \partial 1_A(T \cup \{v_1\}) = 1$$
$$\partial 1_A(A \setminus \{v_2\}) = \partial 1_A(T \cup \{v_2\}) = 1$$

Which implies that

$$\partial \partial 1_A(T) = \sum_{v \in X_T(0)} \partial 1_A(T \cup \{v\})$$

= $\sum_{v \in \{v_1, v_2\}} \partial 1_A(T \cup \{v\}) + \underbrace{\sum_{v \in X_T(0) - \{v_1, v_2\}}}_{=0} \partial 1_A(T \cup \{v\})$
= $\partial 1_A(T \cup \{v_1\}) + \partial 1_A(T \cup \{v_2\})$
= $1 + 1 = 0$

Where the last equality is as all summation is modulo 2.

The proof for $\delta \delta = 0$ is similar.

Definition 2.3.

$B_i = \operatorname{Im} \partial_{i+1} \subset C_i$ Boundary	$B^i = \operatorname{Im} \delta_{i-1} \subset C_i$ Coboundary
$Z_i = \ker \partial_i \subset C_i$ <i>Cycle</i>	$Z^i = \ker \delta_i \subset C_i$ Cocycle
$H_i = Z_i/B_i$ Homology	$H^i = Z^i/B^i$ Cohomology

Corollary 2.4. It follows from $\delta_{i+1} \circ \delta_i = 0$, that $\operatorname{Im} \delta_{i+1} \subseteq \ker \delta_i$ i.e. $B^i \subseteq Z^i$. Similarly $\partial_i \circ \partial_{i+1} = 0$, implies that $\operatorname{Im} \partial_{i+1} \subseteq \ker \partial_i$ that is $B_i \subseteq Z_i$. Therefor it makes sense to define H_i and H^i .

Example: Cohomology of graph

Let G = (V, E), let's calculate $H^0 = Z^0/B^0$. Notice that C_{-1} is the family of functions from the empty set to $\{0, 1\}$. Therefore, the coboundary B^0 is the set of constant functions on the vertices, i.e. $B^0 = \text{Im } \delta_{-1} = \{1, 0\}$. Let $f \in Z^0$ i.e. $f: V \to \mathbb{Z}_2$ and $\delta_0 f$ is the constant zero function on edges. i.e. for every edge $(u, v) = e \in E$ it holds that $\delta_0 f(e) = f(u) + f(v) = 0 \Leftrightarrow f(u) = f(v)$ for every $u, v \in V$. We can conclude that $f \in Z^0$ is constant on every connected component in V. **Conclusion**: $Z^0 = B^0$ iff G is connected. In this case $H^0 = \{0\}$ and dim $H^0 = 0$.

Definition 2.5. X is k-chomologically-connected if for every $i \leq k$ it holds that $Z^i = B^i$ $(H^i = \{0\})$.

3 Coboundary Expansion

We saw that $H^0 = \{0\}$ iff the graph is connected. We now study a more quantitative measure to connectivity, called coboundary expansion. Let $f: V \to \{0, 1\}$ and denote $S = \{v \in V \text{ s.t. } f(v) = 1\}$ and equivalently for f(v) = 0 denote $\overline{S} = \{v \in V \text{ s.t. } f(v) = 0\}$. As discussed, $\delta_0 f(e) = 1$ if and only if $|e \cap S| = 1$, i.e. $\delta_0 f$ is the indicator of the edges of the cut (S, \overline{S}) . For any function $h \in C_1$ define

$$\operatorname{wt}(h) = \sum_{\sigma:h(\sigma)=1} \operatorname{wt}(\sigma).$$

This is equivalent to the expectation of $h(\sigma)$ when choosing σ ar random according to Π_i . For the uniform distribution over X(1) this is

wt(h) =
$$\frac{|\{\sigma \in X(1) \text{ s.t. } h(\sigma) = 1|}{|X(1)|}$$
.

Let us now look at the ratio between the weight of a function to the weight of its coboundary

$$\frac{\operatorname{wt}(\delta_0 f)}{\operatorname{wt}(f)} = \frac{\frac{E(S,S)}{|E|}}{\frac{|S|}{|V|}}.$$

This is exactly the conductance of G as per Definition 1.1.

Recall: The Cheeger Constant:

$$H_g = \min_{\substack{S \subset V \\ 0 \leq |S| \leq |V|/2}} \frac{\frac{|E(S,\overline{S})}{|E|}}{\frac{|S|}{|V|}} = \min_{\emptyset \neq S \neq V} \frac{\frac{|E(S,\overline{S})|}{|E|}}{\frac{\min(|S|,|\overline{S}|)}{|V|}}.$$

Notice: $\min(|S|, |\overline{S}|)$ is the hamming distance of the indicator function for S (equivalently \overline{S}) from the all 1s all 0s function. i.e. the distance of S from V and \emptyset .

Notation: Let f, f' be two functions such that $f, f' : D \to R$. We denote $\operatorname{dist}(f, f')$ as the fraction of disagreeing inputs between f and f'. And for a set A of functions from D to R, denote $\operatorname{dist}(f, A) = \min_{f' \in A} \operatorname{dist}(f, f')$.

Definition 3.1 (Coboundary expansion).

$$h_k = \min_{f \in C_k \setminus B^k} \frac{\operatorname{wt}(\delta_k f)}{\operatorname{dist}(f, B^k)}.$$

Notice that the coboundary expansion for k = 0 i.e. h_0 is in fact the normalized Cheeger constant. This comes from the fact that B^0 consists of the all 1s and all 0s functions. This can be easily seen by moving from any function f to the set $S = \{v : f(v) = 1\}$.

$$h_0 = \min_{f \notin B^0} \frac{\operatorname{wt}(\delta_0 f)}{\operatorname{dist}(f, B^0)} = \min_{f \neq 1, 0} \frac{\frac{|E(S, \overline{S})|}{|E|}}{\frac{\min(|S|, |\overline{S}|)}{|V|}}$$

Remark 3.2. If $h_k = 0$ then there exists a function $f \in C_k - B^k$ s.t. $\delta_k f = 0$ i.e. $f \in Z^k$. f is also not in B^k , so we get $f \in Z^k/B^k = H^k$ so we can conclude that $H^k \neq \emptyset$. To summarize $h_k = 0 \Leftrightarrow H^k \neq 0$.

4 Context & Applications

- 1. Linial and Meshulam [LM03] wanted to learn expansion properties of random complexes, this is a generalization of G(n, p) which is a graph on n vertices with independent probability p for each edge's existence. They found that connectivity of random complex happens in probability $\frac{k \cdot log(n)}{n}$, this result comes from understanding the coboundary expansion of the complete complex.
- 2. Gromov [G10] introduced the topological overlap property.

For start, let's consider a different notion of conductance. The geometric idea behind the following definition is that for every drawing of vertices on a line, and edges as intervals between vertices then at least an α fraction of the edges (intervals) will overlap.

Generalizing this idea to higher dimensions yield the topological overlap definition

Definition 4.1. We say that a point $x_0 \in \mathbb{R}^d$ pierces a face $S \in X(I)$ in embedding $M : X(0) \underset{mapping}{\hookrightarrow} \mathbb{R}^d$ if x_0 resides is in the convex hull of M(S)

Example: for an embedding M of X(0) to \mathbb{R} , an edge (u, v) induces an interval between M(u) and M(v) and every point in the range [M(u), M(v)] pierces the edge (u, v).

Definition 4.2. We say that $X^{(d)}$ has the topological overlap property if for every embedding of $X(0) \underset{mapping}{\hookrightarrow} \mathbb{R}^d$ there exists $x_0 \in \mathbb{R}^d$ that pieces c-fraction of X(d).

Claim 4.3. If G is a graph with conductance $> \alpha$ then it has the geometric overlap property.

Proof. Embed vertices on real line and pierce in the median.

Theorem 4.4. There exists a point that pierces a constant fraction of topological triangles.

How: if X is a complex with coboundary expansion > c then X satisfies topological overlap.

3. Kaufman and Lubotzky [KL13] relate to property testing and locally testable codes.

C is a linear locally testable code if $C = \{x \in \{0, 1\}^n | Hx = 0\}$ where H is parity check matrix and H is "special" in the sense that every row in H has $\leq q$ entries of 1.

If $w \in \{0,1\}^n$ s.t. $wt(Hw) < \epsilon$ then there exists $x \in C$ s.t. $dist(w, x) < \epsilon$.

Emphasis: Satisfy all equations

```
x_0 + x_1 + x_2 = 1

x_0 + x_2 + x_3 = 1

\vdots

x_0 + x_{100} + x_{101} = 1

x_0 + x_{101} + x_1 = 1
```

And let's analyze this in term of coboundary expansion. Consider a function $f : X(1) \to \{0, 1\}$ i.e. a boolean function on edges. $\delta_1 f : X(2) \to \{0, 1\}$ will output 1 for triangles that has an odd number of edges for which f gives 1. Our code would consist of B^1 .

References

- [1] Nathan Linial, Roy Meshulam: HOMOLOGICAL CONNECTIVITY OF RANDOM 2-COMPLEXES http:// www.cs.huji.ac.il/~nati/PAPERS/hom_connect.pdf
- [2] Mikhail Gromov: SINGULARITIES, EXPANDERS AND TOPOLOGY OF MAPS. PART 2: FROM COMBINA-TORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY: https://link.springer.com/content/pdf/ 10.1007%2Fs00039-010-0073-8.pdf
- [3] Tali Kaufman, Alexander Lubotzky: High Dimensional Expanders and Property Testing https://arxiv.org/ abs/1312.2367
- [4] Sanjeev Arora, Satish Rao, Umesh Vazirani: Expander Flows, Geometric Embeddings and Graph Partitioning https://www.cs.princeton.edu/~arora/pubs/arvfull.pdf