
High Dimensional Expanders

Lecture 9: Coboundary Expansion and Locally Testable Codes

Instructor: Irit Dinur Scribe: Irit Dinur

In this lecture we continue Lecture 7 and study coboundary expansion, this time connecting

this notion to that of locally testable codes. We will prove that the complete complex is a good

coboundary expander and then move to discuss locally testable codes.

1 Recap: Homology, Cohomology, and friends

We recall the definitions from Lecture 7. Let Ci(X,F) denote the vector space of “i-chains”, namely

functions from X(i) to F . We are focusing on F = F2.

Definition 1.1 (Boundary and Coboundary operators).

Boundary Coboundary

∂i : Ci → Ci−1 δi : Ci → Ci+1

∀S ∈ X(i− 1) ∂if(S) :=
∑
T⊃S
T∈X(i)

f(T ) ∀A ∈ X(i+ 1) δif(A) :=
∑
T⊂A
T∈X(i)

f(T )

(All summation is in the field F2).

We defined Bi = Im ∂i+1 and Zi = ker ∂i and also Bi = Im δi−1 and Zi = ker δi. We saw that

always δi+1 ◦ δi = 0 and ∂i ◦ ∂i+1 = 0. Therefore it makes sense to define the quotient space called

the homology: Hi = Zi/Bi, and the quotient space called the cohomology: Hi = Zi/Bi. (Recall

that the elements of a quotient space are cosets, e.g. z +Bi is a typical element in Hi).

Definition 1.2. X is k-chomologically-connected if for every i ≤ k it holds that Zi = Bi (so

Hi = {0}).

For example, we check that the complete complex is very well connected.

Claim 1.3. Let X be the complete d-dimensional complex on n vertices. Then for all i < d,

Zi = Bi.

Proof. We know that Bi ⊆ Zi because δi−1 ◦ δi = 0, so what we need to show is that Zi ⊆ Bi.

Suppose f : X(i) → F and assume that f ∈ Zi, namely δif = 0. We will show that f ∈ Bi =

Im δi−1 by showing that f = δg for some g ∈ Ci−1.

Fix w0 ∈ X(0) and set g(u1, . . . , ui) := f(w0, u1, . . . , ui) whenever w0 6∈ {u1, . . . , ui}. Otherwise

set g(w0, u1, . . . , ui) = 0. Let us check that f = δg: Suppose that w0 6∈ {u0, . . . , ui}. We calculate

δg(u0, u1, . . . , ui) =

i∑
j=0

g(u0, . . . , uj−1, uj+1, . . . , ui) =

i∑
j=0

f(w0, u0, . . . , uj−1, uj+1, . . . , ui) = f(u0, . . . , ui)

where the last equality follows because δf = 0 and in particular δf(w0, u0, . . . , ui) = 0.
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In case that w0 ∈ {u0, . . . , ui} we get that (suppose w0 = uk)

δg(u0, . . . , ui) =
∑
j 6=k

g(u0, . . . , uk−1, w0, uk+1, . . . , ui)+g(u0, . . . , uk−1, uk+1, . . . , ui) = 0+f(u0, . . . , ui)

where the last equality is because whenever w0 is inside a face, g is defined to be zero. Whenever

w0 is not inside a face, g is defined to be equal to f on the face when we add w0.

2 Coboundary Expansion

We now recall the quantitative definition of connectivity. This definition needs a notion of weight

on the X(i). It is simplest to assume first that the complex is regular, namely that every i face is

contained in the same number of i+ 1 faces. A more general definition of weights was given in the

first lecture:

Definition 2.1. Let X be a pure d-dimensional simplicial complex. We define on X measures

πd, πd−1, . . . , π0 as follows:

• πd: an arbitrary probability distribution over X(d), for example the uniform distribution.

• πi: The probability of choosing a face T ′ ∈ X(i) is the probability of choosing a face T ∈ X(d)

with the distribution πd and then choosing T ′ with uniform distribution over all faces in X(i)

that are contained in T .

With this definition in hand it is natural to define the weight of an i-chain f as

wt(f) := Pr
σ∼X(i)

[f(σ) 6= 0] =
∑

σ:f(σ)6=0

wt(σ)

where summation here is over R. Similarly, the distance of an i-chain to a set Bi is

dist(f,Bi) := min
b∈Bi

wt(f − b).

The coboundary expansion compares the distance of f from Zi (measured by the weight of δif)

to the distance of f to Bi.

Definition 2.2 (Coboundary expansion).

hi = min
f∈Ci\Bi

wt(δif)

dist(f,Bi)
.

(We have seen in Lecture 7 that the coboundary expansion for i = 0 is in fact the normalized

Cheeger constant.)

3 Coboundary Expansion of the Complete Complex

Theorem 3.1 (Gromov, Linial-Meshulam). Let X be the d-dimensional complete complex on n

vertices. Then for all 0 ≤ i < d, hi > 1.

It is assumed here that the complete complex is accompanied with the uniform measures on

each X(i), so all weights and distances are with respect to the uniform distribution.
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Proof. Firx f ∈ Ci \Bi such that wt(δf) = ε. We will show that dist(f,Bi) < ε. We will do so by

finding g such that δg ≈ f . By the assumption that wt(δf) = ε we have

ε = Pr
v0,...,vi+1

[δf(v0, . . . , vi+1) = 0] = Ev0 Pr
v1,...,vi+1

[δf(v0, . . . , vi+1) = 0].

Fix some v0 ∈ X(0) for which the above probability is at most the expectation ε. Define an i− 1-

chain g by g(τ) = f(v0 ∪ τ) whenever v0 6∈ τ , and otherwise g(τ) = 0. This is very similar to our

proof of Claim 1.3 above. We calculate the distance of f and δg :

δg(σ) =
∑
x∈σ

g(σ \ {x}).

If v0 6∈ σ this is equal to

=
∑
x∈σ

f({v0} ∪ σ \ {x})

which equals f(σ) whenever δf({v0} ∪ σ) = 0, which happens with probability exactly 1− ε.
Moreover for any σ = {v0} ∪ τ (where τ is an i− 1-face that doesn’t contain v0), by definition

δg(σ) = g(τ) +
∑
x∈τ

g({v0} ∪ τ \ {x}) = f({v0} ∪ τ) + 0 = f(σ).

So the probability that δf(σ) 6= g(σ) is strictly smaller than ε, and so we have proven that

dist(f,Bi) < wt(δf).

Question: where in this proof did we use the fact that X is the complete complex?

Notice that the argument is one of “defect correction”. We are given f with small defect (wt(δf)

is small), and we use it to construct a “corrected version” δg which is close to f and has no defect

(since δ(δg) = 0).

4 A Property Testing Perspective

Lubotzky and Kaufman observed that coboundary expansion can be viewd as a certain property

testing result. In property testing, a property is a set P ⊂ {0, 1}n and the goal is to find a so-called

tester for this property. The tester is randomized, and reads a few bits from the string to-be-tested,

and either accepts or rejects. The completeness is the probability of accepting a string s ∈ P . The

soundness is the probability of accepting a string s that is far from P . One way to argue soundness

is to show that if the tester rejects with probability less than ε then the string must be c · ε close

to P .

Let us see how this relates to coboundary expansion. The property we are looking at is a

property of i-chains, that of being a coboundary. Namely

P = Bi ⊂ {0, 1}X(i).

There are potentially various testers for this property, but coboundary expansion talks about one

specific test, the cocycle test. Fix an i-chain f to-be-tested. The tester is the following random

procedure:

• Choose a random i+ 1-dimensional face σ

• Accept iff
∑
x∈σ f(σ \ {x}) = 0 mod 2



Irit Dinur – Lecture 9: Coboundary Expansion and Locally Testable Codes 4

In other words, the test checks that δf(σ) = 0 for a random σ. Clearly, the rejection probability

of this test is exactly wt(δf). Coboundary expansion guarantees that if this probability is small

then the distance of f from Bi is small,

dist(f,Bi) ≤ 1

hi
· wt(δf).

Let us conclude with a few remarks.

• In property testing, the property is at the center of focus, and the exact test is less important.

In (coboundary) expansion, the complex describes both the property and the test, so we are

not interested in the general testability of Bi but in the question of whether the cocycle test

is a good test.

• One can define an appropriate notion of expansion even in case of non-zero cohomology.

Instead of coboundary expansion this would be cocycle expansion, and this is known as

cosystolic expansion. It tests the property Zi (which coincides with Bi only when the coho-

mology vanishes). Cosystolic expansion is defined to be

h̃i = min
f∈Ci\Zi

wt(δif)

dist(f, Zi)
.

5 Locally Testable Codes

In the last part of the lecture we described the notion of locally testabe codes (LTCs). A locally

testable code is an error correcting code C ⊂ {0, 1}n that has a tester in the property-testing

sense described above. The first example of an LTC is the Hadamard code H ⊂ {0, 1}2k whose

codewords are the so-called “linear functions” `a : {0, 1}k → {0, 1}. For each a ∈ {0, 1}k the

function `a is defined by `a(x1, . . . , xk) =
∑k
i=1 aixi mod 2.

H = {`a : {0, 1}k → {0, 1} : a ∈ {0, 1}k}.

The testability of this code is also known as linearity testing: given a function f : {0, 1}k → {0, 1},
we want to test if f ∈ H. Namely, if there is some `a such that f = `a.

The linearity test is simple, and makes only three queries to f :

• Choose x, y ∈ {0, 1}k uniformly at random

• Accept iff f(x) + f(y) = f(x+ y)

It is easy to see that if f = `a for some a then the test succeeds with probability 1. This

establishes (so-called perfect) completeness. Soundness is proven through the following lemma

Lemma 5.1. If Pr[ Test fails ] < ε then there is some a such that dist(f, `a) < ε.

Note how similar this statement is to the proof of Theorem 3.1 where we showed that if the

cocycle test rejected f with probability at most ε then dist(f, δg) < O(ε) for some coboundary δg.
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