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In this lecture we describe agreement tests, which are a generalization of direct product tests and

low degree tests, both of which play a role in PCP constructions. It turns out that the underlying

structures that support agreement tests are invariably some kind of high dimensional expander, as

we shall see.

1 General Setup

It is a basic fact of computation that any global computation can be broken down into a sequence

of local steps. The PCP theorem [AS98, ALM+98] says that moreover, this can be done in a robust

fashion, so that as long as most steps are correct, the entire computation checks out. At the heart

of this is a local-to-global argument that allows deducing a global property from local pieces that

fit together only approximately.

In an agreement test, a function is given by an ensemble of local restrictions. The agreement

test checks that the restrictions agree when they overlap, and the main question is whether typical

agreement of the local pieces implies that there exists a global function that agrees with most local

restrictions.

Let us describe the basic framework, consisting of a quadruple (V,X, {FS}S∈X ,D).

• Ground set: Let V be a set of n points (or vertices).

• Collection of small subsets: Let X be a collection of subsets S ⊂ V , typically for each

S ∈ X we have |S| � n.

• Local functions: for each subset S ∈ X, there is a space FS ⊂ {f : S → Σ} of functions

on S. The input to the agreement test is an ensemble of functions

{fS ∈ FS : S ∈ X}

• Test distribution: An agreement test is specified by giving a distribution D over pairs (or

triples, etc.) of subsets S1, S2.

Given an ensemble {fS}, the intention is that fS is the restriction to S of a global function

F : V → Σ. Indeed, a local ensemble is called perfect if there is a global function F : V → Σ such

that

∀S ∈ X, fS = F |S .

An agreement check for a pair of subsets S1, S2 checks whether their local functions agree,

denoted fS1
∼ fS2

. Formally,

fS1
∼ fS2

⇐⇒ ∀x ∈ S1 ∩ S2, fS1
(x) = fS2

(x).
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A local ensemble which is perfect passes all agreement checks. The converse is also true: a local

ensemble that passes all agreement checks must be perfect. We however will be interested in

less-than-perfect ensembles, i.e. ensembles that pass a good fraction of the agreement checks, but

perhaps not all of them.

An agreement test is specified by giving a distribution D over pairs (or triples, etc.) of subsets

S1, S2. We define the agreement of a local ensemble to be the probability of agreement:

agreeD({fS}) := Pr
S1,S2∼D

[fS1
∼ fS2

] .

An agreement theorem asserts that if {fS}S is a local ensemble with agreeD({fS}) > 1− ε then it

is close to being global.

2 Direct Product Tests

Perhaps the simplest agreement test to describe is the direct product test, in which X contains all

possible k-element subsets of V . Namely,

• Ground set: V = [n] = {1, 2, . . . , n}.

• Collection of small subsets: X =
(
[n]
k

)
for some k � n. This notation stands for all

possible k-element subsets of [n].

• Local functions: For each S ∈ X, we let FS be all possible functions on S, that is FS =

ΣS = {f : S → Σ}

• Test distribution: There are several studied testing distributions. A central example is

this: choose a parameter t such that 0 < t/k < 1, and let D(t) be the distribution obtained by

choosing a set T of t random elements in V , and then S1, S2 ⊃ T uniformly and independently

(such that S1, S2 ∈ X).

Suppose that agree({fS}) ≥ 1 − ε. Is there a global function F : V → Σ such that F |S = fS for

most subsets S? This is the content of the following theorem [DS14, DFH17]:

Theorem 2.1 (Direct Product Testing theorem). There exists constants C > 1 such that for all

α, β ∈ (0, 1) satisfying α+β ≤ 1, all positive integers n ≥ k ≥ t satisfying n ≥ Ck and t ≥ αk and

k − t ≥ βk, and all finite alphabets Σ, the following holds: Let f = {fS : S → Σ | S ∈
(
[n]
k

)
} be an

ensemble of local functions satisfying agreeD(f) ≥ 1− ε, that is,

Pr
(S1,S2)∼D(t)

[fS1
|S1∩S2

= fS2
|S1∩S2

] ≥ 1− ε.

Then there exists a global function F : [n]→ Σ satisfying Pr
S∈([n]

k )[fS = F |S ] = 1−Oα,β(ε).

The qualitatively strong aspect of this theorem is that in the conclusion, the global function

agrees perfectly with 1 − O(ε) of the local functions. Achieving a weaker result where perfect

agreement fS = F |S is replaced by approximate one fS ≈ F |S would be significantly easier but

also less useful. Quantitatively, this is manifested in that the fraction of local functions that end

up disagreeing with the global function F is at most O(ε) and is independent of n and k. It would

be significantly easier to prove a weaker result where the closeness is O(kε) (via a union bound on

the event that F (i) = fS(i)).
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3 Low Degree Tests

The first agreement test that was studied is the line vs. line [GLR+91, RS96] low degree test in

the proof of the PCP theorem. A function f : Fm → F is said to have degree at most d if there is

a polynomial

p(x1, . . . , xm) =
∑

(a1,...,am)∈Fm: a1+...+am≤d

αa

m∏
i=1

(xi)
ai

such that for all z ∈ Fm, p(z) = f(z). Low degree functions are useful in PCP constructions

because of several reasons.

• Error correction: two low degree functions disagree on a large portion of their domain; in

other words: the collection of low degree functions is an error correcting code (called the

Reed-Muller code).

• Local testability: a low degree multivariate function remains low degree when restricted to

a small-dimensional subspace. This gives a natural way to check locally whether a given

function has low degree.

• Interpolation: Given an arbitrary function, it is easy to embed it into a low degree function

through interpolation. This allows to encode any “proof” into a low degree function.

In the PCP construction, a low degree function on a large vector space is replaced by an ensemble

of (supposed) restrictions to all possible affine lines. These supposed-restrictions are supplied by a

prover and are not a priori guaranteed to agree with any single global function. This is taken care

of by the “low degree test”, which checks that supposed-restrictions on intersecting lines agree with

each other, i.e. they give the same value to the point of intersection. The crux of the argument is

the fact that the local agreement checks imply agreement with a single global function. Thus, the

low degree test captures a local-to-global phenomenon.

• Ground set: V = Fm where F is a finite field.

• Collection of small subsets: X is the collection of all affine lines in V . An affine line is

defined by fixing a pair of distinct points x 6= y ∈ Fm, and then looking at the set

Sx,y = {t · x+ (1− t)y : t ∈ F}

consisting of |F| points. We let X be the set of all such lines (observe that a line can be

described through
(|F|

2

)
different pairs of points x 6= y ∈ S).

• Local functions: For each S ∈ X, we let FS be all low degree functions from S to F with

degree at most d. Explicitly, for each S = Sx,y,

FS =

{
f : S → F

∣∣∣∣∣ f(tx+ (1− t)y) =

d∑
i=0

ait
i for some coefficients a0, ..., ad ∈ F

}
.

One can check that the definition of FS does not depend on the choice of x 6= y ∈ S because

the set of low degree functions is invariant under affine transformations.

• Test distribution: Choose a random point z ∈ Fm, and then independently choose two

affine lines containing this point: S1, S2 3 z.

The low degree testing theorem of [GLR+91, RS96] gives
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Theorem 3.1. For all finite fields F and all d < |F|/2 and for all positive integers m, the fol-

lowing holds: Let f = {fS ∈ FS | S ∈ X} be an ensemble of local low degree functions satisfying

agreeD(f) ≥ 1− ε, that is,

Pr
(S1,S2)∼D

[fS1
|z = fS2

|z] ≥ 1− ε,

where z = S1 ∩ S2 is the point of intersection.

Then there exists a global function F : V → F satisfying PrS∈X [fS = F |S ] = 1−O(ε).

Furthermore, F itself is the evaluation of a polynomial function whose degree is at most d.

What is the role of “low degree”ness in this result? By requiring that the local functions have

low degree, they are somewhat restricted. This makes the fact that two local functions agree on

their intersection even more “surprising” and helps in proving the theorem. In contrast to the

direct product setting, the theorem here simply fails if we change FS to be ΣS , as can be seen by

the following example. For each S independently choose a random point zS ∈ S and let fS(z) = 0

for all z 6= zS and f(zS) = 1. (Check indeed that this function does not have low degree). It is not

hard to check that agree({fS}) > 1 − 2/|F| yet there is no function F : V → F that agrees with

even a tiny fraction of the lines S. Indeed the best candidate would be the zero function F ≡ 0,

but for each S ∈ X we have disagreement: PrS [fS = F |S ] = 0.

3.1 Other variants

There are several variants to agreement tests in the low degree setting. Instead of lines one can

consider planes, namely two-dimensional subspaces, as was done by Raz and Safra. In that case the

test looks at two planes that intersect not in a point but in a line. Interestingly both distributions

are very similar wrt agreement, see [BDN17]. Even higher dimensional subspaces are considered in

other PCPs. One can also replace lines by curves of higher degree, and this appears in the classical

proof of the PCP theorem.

4 Agreement tests and high dimensional expansion

Agreement tests on high dimensional expanders were studied in [DK17]. TBD
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