Coboundary Expansion & Locally Testable Codes

Recall:

"up" \(\delta : C^i \to C^{i+1} \)
\(\delta f(s) = \sum_{v \in s} f(s \setminus v) \)

"down" \(\partial : C^i \to C^{i-1} \)
\(\partial f(s) = \sum_{x(i) \in T \delta s} f(T) \)

Example: boundary of an edge \(\Theta \) a part \(\Theta \) a cycle

\[\begin{array}{c}
\text{Lemma: } \delta \partial = 0 \quad \partial \delta = 0 \\
\text{proof: show true for each basis element.}
\end{array} \]

\(B_i = \text{Im } \delta_{i+1} \) boundary \(\bigcirc \)
\(Z_i = \ker \delta_i \) cycle

\(B^i = \text{Im } \delta_{i-1} \) co-boundary \(\bigcirc \)
\(Z^i = \ker \delta_i \) co-cycle

\(H^i = Z^i/B^i \quad H_i = Z_i/B_i \)

Example: in a graph, calculate \(H^0, H^1 \).

\(\delta_i : C^{i-1} \to C^i \) \(\text{Im } \delta_i = \) the constant \(\overline{0} \) or \(\Xi \) func.

\(\delta_0 : C^0 \to C^1 \) \(\ker \delta_0 = \{ f : \{x \} \mapsto \overline{0}, f(\alpha) = \chi(\overline{0}) \} \)
\(= \) constant on \(\alpha \) 's.
\[\text{In } \delta_0 = \text{ cuts. } \quad \text{Ker } \delta^i_0 : \left\{ f : X(i) \rightarrow \mathbb{R}_f^3 : \forall u \mu : f(u) + f(v) = f(u') \right\} \]

\[\Delta \text{'s sea even # of edges.} \]

Exercise: In the complete complex \(\mathbf{Z}^i = B^i \)

Proof: Suppose \(f : X(i) \rightarrow \mathbb{R}_f^3 \) s.t. \(\delta^i f = 0 \) \((f \in \mathbf{B}^i) \).

We show that \(f \in \mathbf{B}^i = \text{Im } \delta_{i-1} \) by finding \(g : X(i-1) \rightarrow \mathbb{R}_f^3 \) s.t.

\[\delta_{i-1} g = f. \]

Fix \(\omega_0 \) and set

\[g(u_0, \ldots, u_i) \triangleq f(\omega_0, u_0, \ldots, u_i) \]

and

\[g(u_0, u_{i+1}, \ldots, u_i) = 0 \quad u_j \neq u_0. \]

Check that \(f = \delta g : \)

\[\forall \omega_0, u_0, \ldots, u_i : \delta g(u_0) = \sum_{j=0}^{i} g(u_0, u_{j+1}, \ldots, u_i) \]

\[= \sum_{j=0}^{i} f(\omega_0, u_0, \ldots, u_j, \ldots, u_i) \]

since \(\delta^i f = 0 \)

so \(\delta^i f(u_0, u_0, \ldots, u_i) \)

Co-boundary Expansion:

\[h^i = \text{sup } \frac{\text{wt}(\delta f)}{\text{dist}(f, B^i)} \]

for \(f \in \mathbf{Z}^i \backslash B^i \).
Thin [Gromov, LM]: Let $X = \Delta_n^{(d)}$.

$\forall 0 \leq i < d \quad \varphi^i > 1$

Proof: Fix $f \in C^i$, i.e. $f : X(i) \sim \Omega_{o,i}$. Suppose $w^t(\delta^f) < \epsilon$.

We will show that $\text{dist}(f, B^i) < \epsilon$.

If $f \in B^i$ this is obvious.

Otherwise, we find g s.t. $f \neq dg$.

$\delta f < \epsilon \implies$

\[\text{Prob} \left\{ \delta f(v_0 \cdots v_{i+1}) \neq 0 \right\} < \epsilon \]

\[\text{Prob} \left\{ v_{i+1} \right\} < \epsilon \]

\[\text{Fix } v_0 \text{ s.t. } \exists \]

Define $g(s) = \begin{cases} f(v_0 u s) & \text{if } v_0 \in s \\ 0 & \text{if } v_0 \notin s \end{cases}$

Check distance of dg and f.
\[\delta g(S) = \sum_{x \in S} g(S \setminus x) \]

\[v_0 \notin S = \sum_{x \in S} f(v_0 \cup S \setminus x) \]

\[= f(S) \]

\[\text{iff } \delta f(v_0 \cup S) = 0 \]

\[\text{with } \text{prob } > 1 - \eta. \]

\[\delta g(s) = f(s) \iff \delta f(v_0 \cup s) = 0 \]

\[\delta g(v_0 \cup T) = g(T) + \sum_{x \in T} g(v_0 \cup T \setminus x) \]

\[f(v_0 \cup T) \quad O \]

always true.

\[\text{prob } \left(\frac{\delta g(S) = f(S)}{S} \right) > 1 - \eta. \]

Comment: \(f \) was "corrected" to \(\delta g \).
\(\delta g \) "clearly" is in \(B \)
and \(\delta g \) is close to \(f \) (using the data
re \(\delta H \) is 0)

Locally Testable Code

Linear space, defined by LDPC.

Test: associate a \(\nu t \) to each parity check.

"robustness of the
" test" = \(\frac{\nu t \text{ (rejecting checks)}}{\text{distance from code}} \)

Example: "linearity testing"

\[
\text{Code} = \{ f \in \{0,1\}^n \rightarrow \{0,1\}^n \mid f \text{ is } \mathbb{F}_2 \text{-linear} \}
\]

\[
= \{ f: \{0,1\}^n \rightarrow \{0,1\}^n \mid \forall x, y \in \mathbb{F}_2^n, f(x)+f(y)=f(x+y) \}
\]

\[Hf = 0 \quad H = \left[\begin{array}{c} z \\ \vdots \\ \delta f \end{array} \right] \]
Claim: The two sets are equivalent.

Proof: Let $\alpha_i = f(e_i)$.

clearly $f(\sum_x \alpha_i x_i) = \sum_x \alpha_i x_i = \langle \alpha, x \rangle$

Then [BLR]: if $\text{Prob} \left(f(x) \neq g(y) \right) > 1 - \varepsilon$

$\forall x, y$ then $\exists g$ linear s.t. $\text{Prob}(f = g) > 1 - 2\varepsilon$.

There are two very different proofs.

(a) Fourier analytic

(b) combinatorial "coboundary" style.

\[f : \{\pm 1\} \rightarrow \{\pm 1\} \quad f = \sum \hat{f}(s) x_s \]

\[\text{Prob} \left(f(x) f(y) \cdot f(x, y) = 1 \right) > 1 - \varepsilon \]

$\quad \forall x, y$ mult pointwise

$\Rightarrow \quad \text{E}_{x, y} f(x) f(y) f(x, y) > 1 - 2\varepsilon$
= \mathbb{E} \left(\sum_{x,y} \hat{p}(R,x,y) \right) \\
= \mathbb{E} \left(\sum_{x,y} \hat{p}(R,x,y) \right) \\
= \sum_{x,y} \hat{p}(R,x,y) \\
\Rightarrow \exists s \text{ s.t. } \hat{p}(s) > 1 - 2\varepsilon \\
\Rightarrow p > 1 - 2\varepsilon !

NP, CSPs; robustness and expansion

the landscape of solutions

Given ϕ a constraint system. E.g. a 3sat instance.

sat(ϕ) = $\{ a \in \{0,1\}^n : \phi(a) = \text{true} \}$

rej(ϕ) = frac of unhappy constraints.

hist(a, sat(ϕ)) vs rej(a).

\textbf{Def} Constraint Expander :
Generalizes several notions of PT, LTC, expansion:

1. If \(\phi \) is a graph, and each edge is \(\gamma \), this is edge expansion.

2. If \(\phi \) are constraints LDPC \(\rightarrow \) LTC

3. If \(\phi \) are cycle constraints on a S.C., this is cosystolic expansion (like coboundary expansion, but distinct if the cohomology is \(\neq 0 \)).

\[
\chi(\phi) = \min_{a \in \text{sat}(\phi)} \frac{\max_{a \in \phi} \text{dist}(a, \text{sat}(\phi))}{\text{dist}(a, \text{sat}(\phi))}
\]

\[\text{PCP theorem : [GP]}:\exists \gamma_0 \geq 0 \land \text{Alg from } (V_1, C_1) \text{ to } (V_2, C_2) \text{ s.t. } \gamma(C_2) > \gamma_0 \text{ and there is a bijection } \text{sat}(C_1) \leftrightarrow \text{sat}(C_2)\]
Corollary: it is NP-hard to decide if a given φ has $val = 1$ or $val < 1 - \delta$.

Proof of Corollary:

Start with NP-hard φ_1, convert to φ, using expansion.

If alg can decide between φ_1 and φ_0 then

if φ_1 is sat \implies φ is sat
if φ_1 is unsat \implies φ isn't even \forall_0-sat

$(A \land \text{dist}(\varphi, \text{sat}(\varphi)) = 1 \implies$

\[
\frac{\text{prob}}{\frac{1}{2}} > \gamma
\]