Lecture 13 - Double Samplers

Today we will define & explore double samplers, which are related to ADX but possibly more flexible.

To start, let us talk about samplers.

Def: (Algorithmic definition)

A **sampler** is an algorithm that is given an accuracy parameter \(E \), and an error parameter \(\delta \), and "oracle access" to a function \(f: [N] \rightarrow \{0,1\} \). The sampler probes some \(n \) points and outputs \(\frac{1}{n} \sum_{i} f(x_i) \).

The sampler outputs, with probability at least \(1 - \delta \), a value that is at most \(E \) away from \(E \) for \(f(x) \).

\[
\Pr \left[\left| \frac{1}{n} \sum_{i} f(x_i) - E f(x) \right| < \varepsilon \right] > 1 - \delta
\]

Graph definition: \(V \)

\[
\begin{array}{c}
\vdots \\
\xrightarrow{2} x_2 \\
\xrightarrow{3} x_3 \\
\vdots \\
\end{array}
\]

A **s**amper is a bipartite graph \((V_s, V_t)\) s.t. each vertex in \(V_s \) has degree \(d \), \(V_s = [N] \) and such that \(\forall f: [N] \rightarrow \{0,1\} \),

\[
\Pr \left[\left| \frac{1}{n} \sum_{i} f(x_i) - \frac{1}{d} \sum_{i} f(x_i) \right| < \varepsilon \right] > 1 - \delta
\]

Recall \(\chi(b) = \sup_{f: \|f\|_2 \leq 1} \left| \frac{1}{n} \sum_{i} f(x_i) - \frac{1}{d} \sum_{i} f(x_i) \right| \)

Lemma: Let \(G \) be a bipartite graph \((V_s, V_t, E)\), right \(\alpha \)-regular.

\(G \) is \((\varepsilon, \delta) \)-**sampler**

Then \(G \) contains a \(\frac{\varepsilon}{\delta} \)-**expander**

Proof: (only items 1)

Let \(f: A \rightarrow \{0,1\} \) \(\ell = \frac{\varepsilon}{\delta} \),

let \(T = \{ x \in B \mid \| f(x) - \frac{1}{d} \delta \|_2 > \varepsilon \} \)

\(M_{\frac{\varepsilon}{\delta}} = M' \), \(\| M' \|_2 \leq \varepsilon \), \(\| f \|_2 \leq \frac{\varepsilon}{\delta} f \). Use \(\| f \|_2 \leq \varepsilon \), \(\| f \|_2 \leq \frac{\varepsilon}{\delta} f \), \(\| f \|_2 \leq \frac{\varepsilon}{\delta} f \).

By Markov's inequality, \(\Pr \left[\| M' \|_2 > \varepsilon \right] < \frac{\varepsilon}{\delta} f < \frac{\varepsilon}{\delta} f \)
Lemma: Samplers are good for distance amplification.

\[\text{ABNNR construction} \]

(Spectral) - Double Samplers

\[V_0 \]
\[V_1 \]
\[V_2 \]

Def: A 3-partite graph \(V_0, V_1, V_2 \) is a \(\delta \) double sampler if

1. \(\chi(G(V_0, V_1)) \leq \gamma \)
2. \(\chi(G(V_1, V_2)) \leq \gamma \)
3. \(\forall T \in V_2 \) let \(V_T^1, V_T^0 \) be the neighbors of \(T \) and let \(G(V_T^1, V_T^0) \) be the graph induced on these sets. Then \(\forall T \chi(G(V_T^1, V_T^0)) \leq \gamma \).

Example: Taking \(V_0 = [n], V_1 = \binom{n}{k}, V_2 = \binom{n}{k} \)
we get a double sampler with \(\lambda^2 \leq \max\left(\frac{1}{t_n^2}, \frac{1}{t_2^2}, \frac{1}{t_3^2}, \frac{1}{t_2t_3} \right) + o(1) \)

Example 2: Take \(V_0 = \text{lines in } \mathbb{R}^i \) in a vector space \(V_i = \mathbb{R}^i \) \(V_2 = \mathbb{R}^i \)

However, \(|V_4| \gg |V_0|, |V_6| \gg |V_0| \).

Recall, \(\|L^+ - UD\| < Y \) for all dimensions.

Theorem: Let \(X \) be a \(d \)-dimensional \(Y \) \(HDX \) then satisfy

\[
V_0 = x(e) \\
V_i = x(k) \\
V_2 = x(d)
\]

and connect two faces \(s, t \) if set

we get a double sampler with \(\lambda^2 \leq \max\left(\frac{1}{t_n^2}, \frac{1}{t_2^2}, \frac{1}{t_3^2}, \frac{1}{t_2t_3} \right) + o(1) \)

(clearly, for any \(\lambda \) one can choose \(t_3 \) large enough and \(Y \) small enough so that \(\text{RHS} < \lambda \))

and: \(|V_4| = o(|V|) \) \(|V_6| = o(|V|) \).

Recall: \(X(e) \xrightarrow{X(i)} \cdots \xrightarrow{X(d)} \)

up, down operators

Key lemma: \(\lambda^2 \left(\mathbb{E}(x(i), x(i+1)) \right) = \lambda \left(D_{i+1} U_i \right) \leq \left(\frac{i+1}{i+2} \right)^2 + o(1) \)
Corollary: \(\lambda (G(\chi(k), \chi(d))) \leq \frac{k+1}{d+1} + O\left(\frac{1}{d}\right) \)

Recall, in a bipartite graph \((A, B, E)\)

\[\lambda(T^*) = \lambda(T^*) \leq \left(\lambda(T)\right)^2 \]

where \(\lambda(T) = \max \{ \|Tf\| \}_{f \perp T} \)

\[f \perp T \iff \|Tf\| = 1 \]

\[(so \ A \ f \perp T \|Tf\| \leq \lambda(T) \|f\|) \]

Proof of corr: \(\lambda(U_{d-1} \cdots U_k) \leq \lambda(U_{d-1}) \cdots \lambda(U_k) \)

(assume first that \(\chi = 0 \))

\[\frac{1}{d+1} \lambda^{-1} \leq \frac{k+1}{d+1} + O\left(\frac{1}{d}\right) \]

We used the following fact (inductively on \(d-k\) layers)

If \(G \) is a 3 layer graph on vertices \(A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_t \)

Then \(\lambda(U_{d-1} \cdots U_2 U_1) \leq \prod_{i=1}^{t} \lambda(U_i) \)

Proof: If \(f \in \ell_2(A_t) \) \(f \perp T \) then \(Uf \perp T \)

and inductively for all \(i > 1 \) \(U_i \circ U_{i-1} \cdots U_1 \)

so \(\|U_{d-1} \cdots U_2(U_t)\| \leq \chi \cdot \lambda_2 \cdot \lambda_{d-1} \cdot \|U_f\| \leq \chi \cdots \lambda_1 \cdot \|U_f\| \)

inductive hyp
Proof of key lemma:

We prove by induction on i that $\lambda(U_i) = \chi(D_{i+1}U_i) \leq \frac{i+1}{i+2} + \delta(U_{i+1})$.

For $i = 0$: $U_0 : \ell_b(X_0) \to \ell_b(X_1)$ ($D_0 = U_0^*$).

D_0U_0 is the upper random walk on the vertices.

This walk is $\frac{1}{2}$-lazy, and $D_0U_0 = \frac{1}{2}I + \frac{1}{2}L_0$.

Additionally, by definition $\|L_0 - U_0 D_0\| \leq \gamma$.

So for any $f \in \ell_b(X_0)$ at $f \perp 1$:

$$\|L_0 f\| = \| (L_0 - U_0 D_0) f\| \leq \gamma \|f\|$$

Therefore:

$$\|D_0U_0 f\| = \| \frac{1}{2}f + \frac{1}{2}L_0 f\| \leq \frac{\gamma}{2} \|f\| + \frac{\gamma}{2} \|f\|$$

$$\Rightarrow \lambda(D_0U_0) \leq \frac{1}{2} + \gamma$$
Assume for \(i \), prove for \(i + 1 \):

\[
U_i : e_i(X(i)) \rightarrow e_i(X(i+1)) \quad D_{i+1} = U_i^*
\]

\(D_{i+1} U_i \) is a lazy upper walk, with \(\frac{1}{i+2} \) probability to stay in place.

\[
D_{i+1} U_i = \frac{1}{i+2} \cdot \text{Id} + \frac{i+1}{i+2} \cdot L_i^+
\]

By assumption \(\| L_i^+ - U_i D_i \| \leq \gamma \).

So for \(f : X(i) \rightarrow \mathbb{R}, f \leq 1 \),

\[
\| L_i^+ f - U_i D_i f \| \leq \gamma \| f \| \quad \text{D inequality}
\]

\[
\Rightarrow \| L_i^+ f \| - \| U_i D_i f \| \leq \gamma \| f \|
\]

\[
\| L_i^+ f \| \leq \left(\gamma + \frac{i+1}{i+2} \cdot \gamma \right) \| f \|
\]

\[
\| D_{i+1} U_i f \| \leq \frac{1}{i+2} + \frac{i+1}{i+2} \cdot \left(\gamma + \frac{i}{i+1} \right)
\]

\[
= \frac{i}{i+2} + \frac{i}{i+2} + \gamma \cdot (i+1) = \frac{i+1}{i+2} + \gamma (i+1)
\]
Double samplers exist, with $O(n)$ vertices and $\lambda \to 0$.

Questions:
- Lower bounds on C_n as $\lambda \to 0$
- Constructions with full regularity.

Summary

- HDX, local link def
 - RW def \(\| L^+ - UD \| \leq \gamma \)
 - Spectrum of \(X(i) - X(j) \) operators & Double Samplers.
- Expander graphs — ZigZag construction
- Cayley graphs & groups — Characters
- Error correcting codes, ε-biased sets

Constructions of HDX:
- Flags Complex
- Salil's construction
- K_0 construction
Testing: BLR lin. testing
Coboundary Expansion & Top overlap
Agreement testing

Harmonic Analysis: on Boolean Cube & Hix