
Hardness Of Approximation 2019-04-04

Lecture 1: Introduction

Instructor: Irit Dinur and Amey Bhangale Scribe: Boaz Menuhin

In this lecture we introduce approximation algorithms. We will first introduce several Optimization

Problems. Afterward, we will present Approximation Algorithms and Gap Problems. We will then cover

two variants of the The PCP theorem, and finish with a small example of Property Testing.

1 Optimization Problems

An optimization problem is a problem for which an algorithm should output the ”Best” (under some

value function) solution. This, as opposed to regular search problems for which one needs to find a

solution, no matter how good it is. Here is a list of s few well-known optimization problems.

� MAX-3-SAT

Instance: Given x1, ..., xn boolean variables, C1, ..., Cm clauses, where clause Ci is specified by

i1, i2, i3 and by some negation pattern ∈ {0, 1}3 i.e. a clause Ci = xi1 ∨ ¬xi2 ∨ ¬xi3 .

Define:

– For an assignment a ∈ {0, 1}n value(a) := Pr1≤i≤m[Ci is satisfied].

– For an instance φ, value(φ) := maxa∈{0,1}n value(a).

Goal: Find value(φ).

� MIN-SET-COVER

Instance: A universe V and collection of subsets S1, ...Sm ⊂ V .

Goal: find minimal A ⊆ [m] s.t.
⋃
i∈A Si = V .

� MIN-VERTEX-COVER

Given an undirected graph, find the smallest set of vertices that touches all edges.

� MAX-INDEPENDENT-SET

Given a graph, find the largest set of vertices without spanning any edges.

Remark: Interestingly, despite being very similar in the decision variant, MIN-VERTEX-COVER and

MAX-INDEPENDENT-SET have very different approximation algorithms.

� MAX-CUT

Given a graph, cut it in a way that maximizes the number of edges crossing between it’s two parts.

i.e. find S ⊂ V that maximizes
|E(S, V \ S)|

|E|
.

� MAX-3-LIN

Given vars x1, ..., xn and equations of the form xi1 + xi2 + xi3 = b (mod 2) with b ∈ {0, 1},
maximize the number of equations satisfied.

Fact: Both MAX-3-LIN and MAX-CUT are NP-hard.

1

Boaz Menuhin – Lecture 1: Introduction 2

� MAX-CSP (Constrains Satisfaction Problem)

Instance: Given x1, ..., xn variables over alphabet Σ (e.g. ΣSAT = {0, 1}, Σ3−COLORING = {1, 2, 3}),
C1, ..., Cm constraints, Ci specified by i1, ...iq ∈ [n] and by some boolean predicate ϕ : Σq → {0, 1}
Define:

– For an assignment a ∈ Σn value(a) := Pr1≤i≤m[Ci is satisfied].

– For an instance ψ, value(ψ) := maxa∈Σn value(a).

� MAX-CSP(Φ)

This is similar to MAX-CSP, except that instead of allowing any predicate, the predicates are form

the specified family of predicates Φ = {ϕ1, ..., ϕk}.

2 Approximation Algorithms and Gap Problems

All the problems mentioned in the previous section are NP-hard. Thus, if P 6= NP , there is no hope of

solving it optimally using a polynomial time algorithm. Therefore, we look at finding a solution which

is as close to the optimal solution as possible. This gives rise to the following notion of approximate

solution.

Definition 2.1 (g-approximation algorithm). An algorithm A is a g-approximation algorithm for an op-

timization problem if it runs in polynomial time and it outputs a solution whose value satisfies value(A(x)) ≥
g · value(x) for all instances x.

Note: This definition applies for maximization problems. For minimization problems we will require

value(A(x)) ≤ g · value(x). In this case, g ≥ 1.

Let us look at the following two trivial 1
2 -approximation algorithms for MAX-3-LIN, one randomized

and one deterministic. Given an instance over Boolean variables x1, x2, . . . , xn.

1. Random Algorithm: Algorithm sets xi ∈ {0, 1} independently.

2. Deterministic Algorithm: Consider the all 0s and all 1s assignments to xis, one of them should

work.

Both satisfy at least 1
2 of the clauses (first one in expectation), as the value(x) ≤ 1 for every instance,

an algorithm that satisfies at least half of the clauses is therefore 1
2 -approximation algorithm.

In order to study the complexity of approximation algorithm, it is convenient to look at the following

decision version:

Definition 2.2 (Gap Problem). A gap(s, c)-problem is the problem of determining for each input x

whether x is a

� Yes instance: value(x) ≥ c or

� No instance: value(x) ≤ s.

Remark: If s ≤ value(x) ≤ c then we don’t care and the algorithm can say whatever it wants. This

definition suits maximization optimization problems. For minimization optimization problems we will

declare x as Yes instance if it is below s and as No instance if above c.

We now state the celebrated PCP theorem which was proved in early 90s.

Boaz Menuhin – Lecture 1: Introduction 3

Theorem 2.3 (The PCP theorem). There exists a constant s < 1 and a polytime reduction ϕ taking

3SAT problem to gap(s, 1)-CSP s.t.

I∈3SAT
(i.e. value(I)=1) −−−−−−−−−−−→ value(ϕ(I)) = 1

I /∈3SAT
(i.e. value(I)<1) −−−−−−−−−−−→ value(ϕ(I)) < s

An easy corollary of the PCP theorem is that it shows that approximating MAX-CSP within a constant

factor is NP-hard.

Corollary 2.4. gap(s, 1)-CSP is NP-Hard.

Following shows the connection between the gap problem and approximation algorithm.

Corollary 2.5. For every s′ > s there is no s′-approximation for MAX-CSP (assuming P 6= NP)

Proof. Assume toward a contradiction that there exists an algorithm A which achieves s′-approximation.

Consider the reduction from Theorem 2.3. If I is a yes instance, then value(I) = 1 ⇒ value(ϕ(I)) =

1 ⇒ value(A(ϕ(I))) ≥ s′ ≥ s. If I is a no instance, then value(ϕ(I)) ≤ s and value(A(ϕ(I))) ≤ s. So

deciding if A(ϕ(I)) > s is the same as deciding gap(s, 1)-CSP.

The PCP theorem can be viewed in terms of proof checking paradigm of a language in NP which

was the original motivation of proving the theorem. Informally, the PCP Theorem shows that for every

language in NP, there exists a polynomial sized proof which can be checked by looking at constantly

many locations. More formally,

Theorem 2.6 (Proof system variant (“The original”) PCP theorem). There exists s < 1 s.t. every

language (problem) in NP has poly-time verifier ver that

� reads input x (|x| = n),

� tosses O(log(n)) coins,

� and reads O(1) bits from proof π

s.t.

x∈L
(e.g. I∈3SAT) −−−−−−−−−−−→ ∃π Pr [verπ(x) accpets] = 1

x/∈L
(e.g. I /∈3SAT) −−−−−−−−−−−→ ∀π Pr [verπ(x) accpets] < s

Question: So what is s?

Answer: H̊astad [?] found the value of s for 3SAT (s = 7
8 + ε) by showing gap(7

8 + ε, 1)-3SAT is NP-hard

for all ε > 0.

Question: What is the smallest value of s for which hardness holds? What is the smallest number

of queries?

Answer: Depends on the alphabet and we will look more into in in the upcoming lectures.

We now define a famous problem in the area of hardness of approximation called Label Cover.

Definition 2.7 (LABEL-COVER). Instance: A bipartite graph G = (R,L,E). For every vertex v there

is a set of labels Σv. For every edge (u, v) there is a set of allowed labels pairs Πu,v ⊆ Σu × Σv.

Goal: Find an assignment σ s.t. for every v, σ(v) ∈ Σv and maximize Pr [(σu, σv) ∈ Πu,v]

Boaz Menuhin – Lecture 1: Introduction 4

Figure 1: LABEL-COVER instance made from gap(s, 1)-CSP instance

C1

C2

C3

Cm

x1

x2

x3

xn

(a) variables x1, x3, xn participate in constraint C2.

Theorem 2.8 (Baby theorem). There exists s1 < 1 such that gap(s1, 1)-LABEL-COVER is NP-Hard.

Proof. Starting from gap(s, 1)-CSP instance with x1, ..., xn vars and C1, ..., Cm constraints, we construct

a LABEL-COVER instance G = (R,L,E) (as in Figure 1). R consists of a vertex for each xi and Σxi
is

the Σ of the CSP (e.g. in 3SAT Σxi
= {0, 1}). L consists of a vertex for each Cj and ΣCj

is a set of all

satisfying assignments for Cj . (Cj , xi) ∈ E if Cj contains xi (xi participates in Cj). And finally,

ΠCj ,xi
= {(α, β)|α is an assignment for the variables of Cj , which satisfies Cj and agrees with β on xi}.

One can show that the reduction works! In other words, satisfied instances are mapped to Label Cover

instance with value 1 and if the value of original instance is at most s < 1, then the value of the Label

Cover instance is bounded away from 1.

Notice: the LABEL-COVER instance have a Projection Property - any assignment to ci forces a unique

assignment for xj . We will see more of this property later in the course.

3 Property Testing

Property testing algorithm is an algorithm which decides whether an input satisfies a property or that

it is ”far” from it. Similar to what done in PCP, in property testing, the amount of bits read from the

input is sublinear (or even constant), however the proof is usually the input itself. Historically, property

testing originates from PCP.

Codes

How did H̊astad prove his theorem on gap(7
8 + ε, 1)-3SAT being NP-hard? In the next lecture, we will

show that gap(s, 1)-LABEL-COVER is NP-hard for any constant s > 0. H̊astad used this as a starting

point and used some very redundant encoding with local testability property to prove hardness result

for MAX-3-SAT.

Start: with a LABEL-COVER instance

Idea: Use locally testable codes, encode labels of the left and right vertices by a function f : {0, 1}t →
{0, 1}. For our purpose, a code is a set of strings far apart from each other.

Boaz Menuhin – Lecture 1: Introduction 5

Hadamard Code

Hadamard code is a set of all linear functions f(x1, . . . , xn) =
∑n
i=1 xi · ai mod 2

HAD = {{0, 1}2
n

|∃a1, ..., an s.t. f(x1, ..., xn) =

n∑
i=1

ai · xi}

Fact: The size of the set is 2n.

Locally Testable Code

There is a tester which is an algorithm that randomly selects i1, ..., iq, reads the codeword in these

locations and accepts/rejects.

� f ∈ code ⇒ Pr [tester accepts] = 1

� f far from code ⇒ Pr [tester accepts] < s.

The following tester for f : {0, 1}n → {0, 1} is a good tester for linearity.

Theorem 3.1 (Linearity Testing Theorem [?]). First, choose x, y ∈ {0, 1}n uniformly at random. Then,

read f(x), f(y), f(x+ y) and accept iff f(x) + f(y) = f(x+ y).

� if f is linear (∃a1, ..., an s.t. f(x1, ..., xn) =
∑
ai · xi) then Pr [test accepts] = 1.

� If there is no linear function that agrees with f on 1
2+ε fraction of the inputs, then Pr [test accepts] <

1
2 + ε.

In the next lecture, we will study the tools to prove the above theorem.

	Optimization Problems
	Approximation Algorithms and Gap Problems
	Property Testing

