Hardness Of Approximation

Lecture 2: Hardness of $\operatorname{gap}(0.99,1-\varepsilon)$-3LIN, LTCs, and Fourier Analysis

The PCP theorem implies $\mathcal{N} \mathcal{P}$-hardness of approximating formula satisfiability. In this lecture we will take our first steps towards showing $\mathcal{N} \mathcal{P}$-hardness of approximating solutions to linear equations.

Definition 0.1. An instance of $\operatorname{gap}(s, c)$-3LIN is a system of linear equations over \mathbb{F}_{2}, with each equations in the system consisting of three variables. ${ }^{1}$ The problem is distinguishing between instances for which there is an assignment that satisfies at least a c-fraction of equations, and instances in which no assignment satisfies more than an s-fraction of equations.

Theorem 0.2. For all $\varepsilon>0, \operatorname{gap}\left(\frac{1}{2}+\varepsilon, 1-\varepsilon\right)$-3LIN is $\mathcal{N} \mathcal{P}$-hard.
Theorem 0.2 is an example of the strong results obtained using the PCP theorem: For any instance of 3LIN, finding an assignment that satisfies at least half of the equations is trivial (try the all-true and all-false assignments), and if the instance is solvable then a solution can be efficiently found by Gaussian elimination. However, if the instance is even slightly not-solvable (i.e. almost all of its equations can be simultaneously satisfied), then finding a solution even slightly better than trivial is hard.

Today we will develop some of the tools used in obtaining this result, and obtain a weaker version of it:

Theorem 0.3 (Theorem 0.2, weaker). For all $\varepsilon>0$, $\operatorname{gap}(0.99,1-\varepsilon)$-3LIN is $\mathcal{N} \mathcal{P}$-hard.

1 Discrete Fourier analysis

Remark 1.1. For convenience, we switch to multiplicative Boolean notation: bit $b \in\{0,1\}$ is replaced with $(-1)^{b} \in\{ \pm 1\}$, and a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is replaced with $h:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ given by $h(x)=(-1)^{f(x)}$.

We define an inner product on $\{ \pm 1\}^{2^{n}}$ by $\langle f, g\rangle:=\mathbb{E}_{x}[f(x) g(x)]$. The Fourier characters are $\chi_{a}:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ given by $\chi_{a}(x):=(-1)^{\sum_{i=1}^{n} a_{i} x_{i}}$ for each $a \in\{0,1\}^{n}$. Observe that these functions are multiplicative, i.e. $\chi_{a}(x+y)=\chi_{a}(x) \cdot \chi_{a}(y)$, which is analogous to linearity in the different notation of Remark 1.1.

Claim 1.2. The Fourier characters form an orthonormal basis for $\{ \pm 1\}^{2^{n}}$.
Proof. For any $a, b \in\{0,1\}^{n}$,

$$
\left\langle\chi_{a}, \chi_{b}\right\rangle=\mathbb{E}_{x}\left[\prod_{i=1}^{n}(-1)^{\left(a_{i}+b_{i}\right) x_{i}}\right]=\prod_{i=1}^{n}\left[\mathbb{E}_{x_{i}}\left[(-1)^{\left(a_{i}+b_{i}\right) x_{i}}\right]\right]
$$

where the rightmost inequality uses independence of the x_{i} 's. Now, for any $i \in[n]$, if $a_{i} \neq b_{i}$ then $\mathbb{E}_{x_{i}}\left[(-1)^{\left(a_{i}+b_{i}\right) x_{i}}\right]=\mathbb{E}_{x_{i}}\left[(-1)^{x_{i}}\right]=0$ and so if $a \neq b$ we have $\left\langle\chi_{a}, \chi_{b}\right\rangle=0$. On the other hand, if $a_{i}=b_{i}$ then $\mathbb{E}_{x_{i}}\left[(-1)^{\left(a_{i}+b_{i}\right) x_{i}}\right]=\mathbb{E}_{x_{i}}\left[(-1)^{0}\right]=1$, therefore if $a=b$ then $\left\langle\chi_{a}, \chi_{b}\right\rangle=1$. We showed that $\left\{\chi_{a}\right\}_{a \in\{0,1\}^{n}}$ is a set of 2^{n} orthonormal vectors and thus is an orthonormal basis for $\{ \pm 1\}^{2^{n}}$.

[^0]As with any orthonormal basis, each function $f:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ can be uniquely written as a linear combination of the Fourier characters; $f=\sum_{a \in\{0,1\}^{n}} \widehat{f}(a) \chi_{a}$, where $\widehat{f}:=\left\langle f, \chi_{a}\right\rangle$. By orthonormality,

$$
\langle f, f\rangle=\left\langle\sum_{a} \widehat{f}(a) \chi_{a}, \sum_{b} \widehat{f}(b) \chi_{b}\right\rangle=\sum_{a, b} \widehat{f}(a) \widehat{f}(b)\left\langle\chi_{a}, \chi_{b}\right\rangle=\sum_{a} \widehat{f}(a)^{2}
$$

This identity, known as Parseval's equality, implies that $\sum_{a} \widehat{f}(a)^{2}=\mathbb{E}_{x}\left[f(x)^{2}\right]=1$, since $f(x) \in\{ \pm 1\}$.
These basic facts will suffice for now, but we've barely scratched the surface discrete Fourier analysisthe reader is enthusiastically referred to [ODo14] for more.

2 Locally testable codes

Theorem 0.3 is proved by a reduction from (a strong version of) the PCP theorem which replaces each constraint with a gadget based on a locally testable code (LTC). An error correcting code $C \subseteq\{0,1\}^{n}$ is a set of codewords such that any two distinct codewords are far apart. Such a code is locally testable if it admits a tester T that distinguishes between inputs in the code and those far from it based only on a few queries. A formal and deeper discussion can be found in [Gol17, Chapter 13]; we move on to two concrete examples.

2.1 The Hadamard code

Viewing elements of $\{0,1\}^{2^{n}}$ as Boolean function on n bits, the Hadamard code, denoted $\operatorname{Had} \subseteq\{0,1\}^{2^{n}}$, consists of all linear functions Boolean functions; that is, $f \in C$ if and only if for all $x, y \in\{0,1\}^{n}$ it holds that $f(x)+f(y)=f(x+y)$, with addition over \mathbb{F}_{2}. The local test tests that this property holds for a random choice of x and y as follows.

Algorithm 2.1 (Hadamard codeword test). Given access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

1. Sample $x, y \in\{0,1\}^{n}$ uniformly at random.
2. Query $f(x), f(y)$ and $f(x+y)$.
3. Accept if and only $f(x)+f(y)=f(x+y)$.

The tester issues three queries to f, and it is clearly complete: it accepts a linear f with probability 1. The soundness of the Hadamard tester is captured by the following claim.

Claim 2.2. For any $\varepsilon \in[0,1 / 2]$, if $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is accepted by the Hadamard tester (Algorithm 2.1) with probability at least $\frac{1}{2}+\varepsilon$, then there exists a Hadamard codeword $h \in \mathbf{H a d}$ such that $\mathbb{P}_{x}[f(x)=h(x)] \geq \frac{1}{2}+\varepsilon$.

Proof. Fourier analysis is more convenient in multiplicative notation, so we will equivalently show that for each $g:\{0,1\}^{n} \rightarrow\{ \pm 1\}$, if $\mathbb{P}_{x}[g(x) g(y)=g(x+y)] \geq \frac{1}{2}+\varepsilon$ (i.e. the test accepts g w.p. at least $\frac{1}{2}+\varepsilon$) then there is $a \in\{0,1\}^{n}$ such that $\mathbb{P}_{x}\left[g(x)=\chi_{a}(x)\right] \geq \frac{1}{2}+\varepsilon$. This suffices, as the Fourier characters $\left\{\chi_{a}\right\}_{a}$ form the Hadamard code Had.

The first step is tying the agreement of g with any χ_{a} to g 's respective Fourier coefficient:

$$
\begin{equation*}
\widehat{g}(a)=\mathbb{E}_{x}\left[g(x) \chi_{a}(x)\right]=\mathbb{P}_{x}\left[g(x)=\chi_{a}(x)\right]+(-1) \mathbb{P}_{x}\left[g(x) \neq \chi_{a}(x)\right]=2 \cdot \mathbb{P}_{x}\left[g(x)=\chi_{a}(x)\right]-1 \tag{1}
\end{equation*}
$$

At the other end, we tie the acceptance probability of g with its Fourier coefficients, observing that the equation $g(x) g(y) g(x+y)=1$ holds if and only g is accepted when the tester samples $x, y \in\{0,1\}^{n}$,
and is equal to -1 otherwise. Thus

$$
\begin{equation*}
\mathbb{E}_{x, y}[g(x) g(y) g(x+y)]=2 \cdot \mathbb{P}[g \text { is accepted }]-1 \geq 2 \varepsilon \tag{2}
\end{equation*}
$$

Combining Equations (1) and (2), what's left is to find an $a \in\{0,1\}^{n}$ with $\widehat{g}(a) \geq \mathbb{E}_{x, y}[g(x) g(y) g(x+y)]$. To do this, we utilize our newly-gained knowledge in Fourier analysis:

$$
\begin{align*}
\mathbb{E}_{x, y}[g(x) \cdot g(y) \cdot g(x+y)] & =\mathbb{E}_{x, y}\left[\left(\sum_{a} \widehat{g}(a) \chi_{a}(x)\right) \cdot\left(\sum_{b} \widehat{g}(b) \chi_{b}(y)\right) \cdot\left(\sum_{c} \widehat{g}(c) \chi_{c}(x+y)\right)\right] \tag{3}\\
& =\sum_{a, b, c} \widehat{g}(a) \cdot \widehat{g}(b) \cdot \widehat{g}(c) \cdot \mathbb{E}_{x, y}\left[\chi_{a}(x) \chi_{b}(y) \chi_{c}(x+y)\right] \\
& =\sum_{a, b, c} \widehat{g}(a) \cdot \widehat{g}(b) \cdot \widehat{g}(c) \cdot \mathbb{E}_{x}\left[\chi_{a}(x) \chi_{c}(x)\right] \cdot \mathbb{E}_{y}\left[\chi_{b}(y) \chi_{c}(y)\right] \\
& =\sum_{a} \widehat{g}(a)^{3}
\end{align*}
$$

Where the last two equations use the independence of x and y, multiplicativity of χ_{c}, and orthonormality of the Fourier characters. Lastly, we recall that $\sum_{a} \widehat{g}(a)^{2}=1$ since g is Boolean, so letting $a_{\text {max }}$ be a maximizer of $\max _{a} \widehat{g}(a)$, we have

$$
\mathbb{E}_{x, y}[g(x) \cdot g(y) \cdot g(x+y)]=\sum_{a, b, c} \widehat{g}(a)^{3} \leq \widehat{g}\left(a_{\max }\right) \cdot \sum_{a} \widehat{g}(a)^{2}=\widehat{g}\left(a_{\max }\right)
$$

2.2 LTC soundness: 99\% vs. 1%

In general, the soundness of LTC tests has different interpretations depending on the correlation of the input with the code.

- Suppose the test passes with probability 99%. A stability result shows that if an input passes with high probability then it is close to some codeword. An example for such a result is Claim 2.2 when ε is close to $1 / 2$.
- At the other end, if an input passes the codeword test with probability slightly better (say, 1% more) then a random input, then it is nontrivially correlated with a codeword. Claim 2.2 resides in this regime as well, when taking ε to be close to 0 .
- As a follow-up, we might seek to obtain a list-decoding bound on the number of codewords that can be nontrivially correlated with the input. For the Hadamard code, this corresponds to a bound on the number of $a \in\{0,1\}^{n}$ for which $\widehat{g}(a) \geq \varepsilon$. Recalling that $\sum_{a} \widehat{g}(a)^{2}=1$ for Boolean g, we have that at most $1 / \varepsilon^{2}$ codewords can be ε-correlated with $g .{ }^{2}$

2.3 The long code

We say that $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a dictator function if there exists $i \in[n]$ such that for all $x \in\{0,1\}^{n}$ it holds that $f(x)=x_{i}$. The long code consists of all dictator functions on n bits, and is denoted by Dict. It's local test is described below:

[^1]Algorithm 2.3. Fix a parameter $\delta \in[0,1]$. Given access to a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$:

1. Sample $x, y \in\{0,1\}^{n}$ uniformly at random.
2. Sample $\mu \in\{0,1\}^{n}$ according to the following process. For each $i \in[n]$, with probability δ sample μ_{i} uniformly at random from $\{0,1\}$, and with probability $1-\delta$ set $\mu_{i}=0$.
3. Accept if and only if $f(x)+f(y)=f(x+y+\mu)$.

Algorithm 2.3 is the same as the Hadamard code test (Algorithm 2.1), except for the addition of a noise vector μ which is used to distinguish between a dictator function and any other linear function.

Claim 2.4 (Completeness of the long code test). If $f \in$ Dict then the long code test accept with probability $1-\delta / 2$.

Proof. Suppose $f(z)=z_{i}$ for all z. The test passes if and only if $\mu_{i}=0$, which occurs with probability $1-\delta / 2$.

The soundness claim is proved using Fourier analysis so we switch back to multiplicative notation, replacing addition with multiplication and bit b with $(-1)^{b}$. In particular, the test checks that $g(x) g(y)=$ $g(x+y+\mu)$, where μ_{i} is uniformly sampled from $\{ \pm 1\}$ with probability δ, and is set to be 1 with probability $(1-\delta)$.

Claim 2.5 (Soundness of the long code test). For $a \in\{0,1\}^{n}$, the Hamming weight of a, denoted $|a|$, is the number of $i \in[n]$ for which $a_{i}=1$. For all $\delta \in[0,1]$, if $g:\{0,1\}^{n} \rightarrow\{ \pm 1\}$ is accepted by the long code test with probability at least $\frac{1}{2}+\varepsilon$ then $\max _{a} \widehat{g}(a) \cdot(1-\delta)^{|a|} \geq 2 \varepsilon$.

Claim 2.5 means that if g passes the test with good probability then not only is it correlated with a multiplicative function χ_{a}, but it must be that a is sparse, i.e. that χ_{a} depends on few variables.

Proof. The proof follows the proof of Claim 2.2, except we need to account for the noise vector in Equation (3). For each $a \in\{0,1\}^{n}$,

$$
\mathbb{E}_{\mu}\left[\chi_{a}(\mu)\right]=\mathbb{E}_{\mu}\left[\prod_{i=1}^{n}(-1)^{a_{i} \mu_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}_{\mu_{i}}\left[(-1)^{a_{i} \mu_{i}}\right]=(1-\delta)^{|a|}
$$

where the rightmost equality is because if $a_{i}=0$ then $\mathbb{E}_{\mu_{i}}\left[(-1)^{a_{i} \mu_{i}}\right]=1$, and otherwise $\mathbb{E}_{\mu_{i}}\left[(-1)^{a_{i} \mu_{i}}\right]=$ $\mathbb{E}_{\mu_{i}}\left[(-1)^{\mu_{i}}\right]=1-\delta$.

Now, just as we calculated Equation (3), we have

$$
\begin{aligned}
\mathbb{E}_{x, y}[g(x) \cdot g(y) \cdot g(x+y+\mu)] & =\sum_{a, b, c} \widehat{g}(a) \cdot \widehat{g}(b) \cdot \widehat{g}(c) \cdot \mathbb{E}_{x}\left[\chi_{a}(x) \chi_{c}(x)\right] \cdot \mathbb{E}_{y}\left[\chi_{b}(y) \chi_{c}(y)\right] \cdot \mathbb{E}_{\mu}\left[\chi_{c}(\mu)\right] \\
& =\sum_{a} \widehat{g}(a)^{3} \cdot(1-\delta)^{|a|} \leq \max _{a} \widehat{g}(a) \cdot(1-\delta)^{|a|}
\end{aligned}
$$

3 Hardness of $\operatorname{gap}(0.99,1-\delta)$-3LIN

With these tools in hand, we may now begin working towards a proof of Theorem 0.3. The proof is by reduction from (a strong version of) the PCP theorem:

Theorem 3.1. For all $\varepsilon>0$, gap $(\varepsilon, 1)$-LabelCover is $\mathcal{N} \mathcal{P}$-hard. Furthermore, $\mathcal{N} \mathcal{P}$-hardness holds even when instances $G=(U, V, E, \Pi)$ are guaranteed to have the following properties:

Figure 1: An example of a projective constraint $\Pi_{u, v}:[7] \rightarrow[3]$. Notice how the top layer projects onto the bottom one.

- Biregularity: any two vertices on the same side (U or V) have the same degree.
- Projectivity: for any $\{u, v\} \in E$, each $\sigma_{u} \in \Sigma_{u}$ has exactly one $\sigma_{v} \in \Sigma_{v}$ such that $\left(\sigma_{u}, \sigma_{v}\right) \in \Pi_{u, v}$. In other words, we can think of $\Pi_{u, v}$ as a function $\Pi_{u, v}: \Sigma_{u} \rightarrow \Sigma_{v}$. (See Figure 1)

The main idea behind the reduction is to replace each vertex w with $2^{\left|\Sigma_{w}\right|}$ variables (see Figure 2), and add linear equations asserting that an assigment to these variables corresponds to a long code of a label $\sigma_{w} \in \Sigma_{w}$ that satisfies the constraints in which w participates. Rather than explicitly describing the system of linear equations, we shall describe a probabilistic verifier of these assertions-the equation system is obtained by enumerating over the random coins of the verifier just as in the equivalence of the "proof system" and the "gap(•)-LabelCover" views of the PCP theorem.

Given a biregular and projective instance $G=(U, V, E, \Pi)$ of LabelCover, create $2^{\left|\Sigma_{w}\right|}$ variables for each $w \in U \cup V$. Given access to an assignment, the verifier runs as follows:

1. Sample a uniformly random edge $\{u, v\} \in E$. Denote the assignment to the $2^{\left|\Sigma_{u}\right|}$ variables created from u by $f:\{0,1\}^{\Sigma_{u}} \rightarrow\{0,1\}$. Similarly, let $g:\{0,1\}^{\Sigma_{v}} \rightarrow\{0,1\}$ denote the assignment to the $2^{\left|\Sigma_{v}\right|}$ variables obtained from v.
2. Do one of the following tests with probability $1 / 3$ each:
(a) Run the long code test (Algorithm 2.3) on f.
(b) Run the long code test on g.
(c) Check that the labels (allegedly) encoded by f and g are consistent with the constraint $\Pi_{u, v}$: uniformly sample $x \in\{0,1\}^{\Sigma_{v}}$ and $y \in\{0,1\}^{\Sigma_{u}}$ and check that

$$
\begin{equation*}
f(y)+f(\widetilde{x}+y)=g(x) \tag{4}
\end{equation*}
$$

where, for each $\sigma \in \Sigma_{u}$, the σ th coordinate of \widetilde{x} is $\widetilde{x}_{\sigma}:=x_{\Pi_{u, v}(\sigma)}$.
Before turning to the analysis of the reduction, let's have another look at the consistency test. Suppose f and g are indeed long codes of labels $\sigma_{u} \in \Sigma_{u}$ and $\sigma_{v} \in \Sigma_{v}$, respectively. Then, $f(\widetilde{x})=\widetilde{x}_{\sigma_{u}}=x_{\Pi_{u, w}\left(\sigma_{u}\right)}$ and $g(x)=x_{\sigma_{v}}$. Now, if σ_{u} and σ_{v} satisfy $\Pi_{u, v}$ (i.e., $\left.\Pi_{u, v}\left(\sigma_{u}\right)=\sigma_{v}\right)$) then Equation (4) holds for any choice of x, y.

Why do we add and subtract $f(y)$ to the consistency check? While x is uniformly distributed in $\{0,1\}^{\Sigma_{v}}, \widetilde{x}$ is not at all uniformly distributed in $\{0,1\}^{\Sigma_{u}}$, so if we were to check only that $f(\widetilde{x})=g(x)$, an adversary could corrupt an encoding of a non-satisfying label on the support of \widetilde{x} so that the consistency check passes. In other words, step 2 a tests that f is close to some long code codeword f^{\prime}, but such closeness only guarantees that f and f^{\prime} agree on a uniformly random input, while \widetilde{x} is not uniformly random. This pitfall is avoided using self-correction: with $y \in\{0,1\}^{\Sigma_{u}}$ distributed uniformly at random, the queries to y and $y+\widetilde{x}$ are uniformly random (though dependent), and if f was a valid codeword then the self-corrected value $f(y)+f(y+\widetilde{x})$ will equal the original one $f(\widetilde{x})$.

Figure 2: The reduction replaces each vertex (circle) with variables corresponding to the long code of a label (square). In this example, $\left|\Sigma_{u}\right|=3$ for each $u \in U$ and $\left|\Sigma_{v}\right|=2$ for each $v \in V$.

3.1 Up next

The reduction almost works (consider the all-zeros assignment). In the next lecture, we will fix the reduction and analyze its soundness, proving Theorem 0.3.

References

[ODo14] Ryan O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. ISBN: 978-1-10-703832-5. URL: http://www. cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions.
[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. IsBN: 978-1-107-19405-2.

[^0]: ${ }^{1}$ We assume instances do not have contradictions. That is, that each equation in the system has an assignment that satisfies it.

[^1]: ${ }^{2}$ In fact, this bound is tight: A Boolean function $f:\{0,1\}^{k} \rightarrow\{ \pm 1\}$ is bent if $|\widehat{f}(a)|=2^{-k / 2}$ for all a. For any $\varepsilon=2^{-k}$ consider a bent function $f:\{0,1\}^{k} \rightarrow\{ \pm 1\}$ with domain extended to $\{0,1\}^{n}$ by "ignoring" the last $n-k$ coordinates. For more on bent functions and their applications, see [ODo14, Section 6.3].

