
Hardness Of Approximation

Lecture 2: Hardness of gap(0.99, 1− ε)-3LIN, LTCs, and Fourier Analysis

Instructor: Irit Dinur and Amey Bhangale Scribe: Orr Paradise

The PCP theorem implies NP-hardness of approximating formula satisfiability. In this lecture we will

take our first steps towards showing NP-hardness of approximating solutions to linear equations.

Definition 0.1. An instance of gap(s, c)-3LIN is a system of linear equations over F2, with each equa-

tions in the system consisting of three variables.1 The problem is distinguishing between instances for

which there is an assignment that satisfies at least a c-fraction of equations, and instances in which no

assignment satisfies more than an s-fraction of equations.

Theorem 0.2. For all ε > 0, gap(1
2 + ε, 1− ε)-3LIN is NP-hard.

Theorem 0.2 is an example of the strong results obtained using the PCP theorem: For any instance

of 3LIN, finding an assignment that satisfies at least half of the equations is trivial (try the all-true and

all-false assignments), and if the instance is solvable then a solution can be efficiently found by Gaussian

elimination. However, if the instance is even slightly not-solvable (i.e. almost all of its equations can be

simultaneously satisfied), then finding a solution even slightly better than trivial is hard.

Today we will develop some of the tools used in obtaining this result, and obtain a weaker version of

it:

Theorem 0.3 (Theorem 0.2, weaker). For all ε > 0, gap(0.99, 1− ε)-3LIN is NP-hard.

1 Discrete Fourier analysis

Remark 1.1. For convenience, we switch to multiplicative Boolean notation: bit b ∈ {0, 1} is replaced

with (−1)b ∈ {±1}, and a Boolean function f : {0, 1}n → {0, 1} is replaced with h : {0, 1}n → {±1}
given by h(x) = (−1)f(x).

We define an inner product on {±1}2n

by 〈f, g〉 := Ex[f(x)g(x)]. The Fourier characters are

χa : {0, 1}n → {±1} given by χa(x) := (−1)
∑n

i=1 aixi for each a ∈ {0, 1}n. Observe that these func-

tions are multiplicative, i.e. χa(x+ y) = χa(x) · χa(y), which is analogous to linearity in the different

notation of Remark 1.1.

Claim 1.2. The Fourier characters form an orthonormal basis for {±1}2n

.

Proof. For any a, b ∈ {0, 1}n,

〈χa, χb〉 = Ex

[
n∏
i=1

(−1)(ai+bi)xi

]
=

n∏
i=1

[
Exi

[
(−1)(ai+bi)xi

]]
where the rightmost inequality uses independence of the xi’s. Now, for any i ∈ [n], if ai 6= bi then

Exi
[(−1)(ai+bi)xi] = Exi

[(−1)xi] = 0 and so if a 6= b we have 〈χa, χb〉 = 0. On the other hand, if

ai = bi then Exi
[(−1)(ai+bi)xi] = Exi

[(−1)0] = 1, therefore if a = b then 〈χa, χb〉 = 1. We showed that

{χa}a∈{0,1}n is a set of 2n orthonormal vectors and thus is an orthonormal basis for {±1}2n

.

1We assume instances do not have contradictions. That is, that each equation in the system has an assignment that
satisfies it.

1

Orr Paradise – Lecture 2: 2

As with any orthonormal basis, each function f : {0, 1}n → {±1} can be uniquely written as a linear

combination of the Fourier characters; f =
∑
a∈{0,1}n f̂(a)χa, where f̂ := 〈f, χa〉. By orthonormality,

〈f, f〉 =

〈∑
a

f̂(a)χa,
∑
b

f̂(b)χb

〉
=
∑
a,b

f̂(a)f̂(b) 〈χa, χb〉 =
∑
a

f̂(a)2

This identity, known as Parseval’s equality, implies that
∑
a f̂(a)2 = Ex[f(x)2] = 1, since f(x) ∈ {±1}.

These basic facts will suffice for now, but we’ve barely scratched the surface discrete Fourier analysis—

the reader is enthusiastically referred to [ODo14] for more.

2 Locally testable codes

Theorem 0.3 is proved by a reduction from (a strong version of) the PCP theorem which replaces each

constraint with a gadget based on a locally testable code (LTC). An error correcting code C ⊆ {0, 1}n is

a set of codewords such that any two distinct codewords are far apart. Such a code is locally testable if

it admits a tester T that distinguishes between inputs in the code and those far from it based only on

a few queries. A formal and deeper discussion can be found in [Gol17, Chapter 13]; we move on to two

concrete examples.

2.1 The Hadamard code

Viewing elements of {0, 1}2n

as Boolean function on n bits, the Hadamard code, denoted Had ⊆ {0, 1}2n

,

consists of all linear functions Boolean functions; that is, f ∈ C if and only if for all x, y ∈ {0, 1}n it

holds that f(x) + f(y) = f(x+ y), with addition over F2. The local test tests that this property holds

for a random choice of x and y as follows.

Algorithm 2.1 (Hadamard codeword test). Given access to a function f : {0, 1}n → {0, 1}:

1. Sample x, y ∈ {0, 1}n uniformly at random.

2. Query f(x), f(y) and f(x+ y).

3. Accept if and only f(x) + f(y) = f(x+ y).

The tester issues three queries to f , and it is clearly complete: it accepts a linear f with probability

1. The soundness of the Hadamard tester is captured by the following claim.

Claim 2.2. For any ε ∈ [0, 1/2], if f : {0, 1}n → {0, 1} is accepted by the Hadamard tester (Algo-

rithm 2.1) with probability at least 1
2 + ε, then there exists a Hadamard codeword h ∈ Had such that

Px[f(x) = h(x)] ≥ 1
2 + ε.

Proof. Fourier analysis is more convenient in multiplicative notation, so we will equivalently show that

for each g : {0, 1}n → {±1}, if Px[g(x)g(y) = g(x+ y)] ≥ 1
2 +ε (i.e. the test accepts g w.p. at least 1

2 +ε)

then there is a ∈ {0, 1}n such that Px[g(x) = χa(x)] ≥ 1
2 + ε. This suffices, as the Fourier characters

{χa}a form the Hadamard code Had.

The first step is tying the agreement of g with any χa to g’s respective Fourier coefficient:

ĝ(a) = Ex[g(x)χa(x)] = Px[g(x) = χa(x)] + (−1)Px[g(x) 6= χa(x)] = 2 · Px[g(x) = χa(x)]− 1 (1)

At the other end, we tie the acceptance probability of g with its Fourier coefficients, observing that

the equation g(x)g(y)g(x+ y) = 1 holds if and only g is accepted when the tester samples x, y ∈ {0, 1}n,

Orr Paradise – Lecture 2: 3

and is equal to −1 otherwise. Thus

Ex,y[g(x)g(y)g(x+ y)] = 2 · P[g is accepted]− 1 ≥ 2ε (2)

Combining Equations (1) and (2), what’s left is to find an a ∈ {0, 1}n with ĝ(a) ≥ Ex,y[g(x)g(y)g(x+ y)].

To do this, we utilize our newly-gained knowledge in Fourier analysis:

Ex,y[g(x) · g(y) · g(x+ y)] = Ex,y

[(∑
a

ĝ(a)χa(x)

)
·

(∑
b

ĝ(b)χb(y)

)
·

(∑
c

ĝ(c)χc(x+ y)

)]
(3)

=
∑
a,b,c

ĝ(a) · ĝ(b) · ĝ(c) · Ex,y[χa(x)χb(y)χc(x+ y)]

=
∑
a,b,c

ĝ(a) · ĝ(b) · ĝ(c) · Ex[χa(x)χc(x)] · Ey[χb(y)χc(y)]

=
∑
a

ĝ(a)3

Where the last two equations use the independence of x and y, multiplicativity of χc, and orthonor-

mality of the Fourier characters. Lastly, we recall that
∑
a ĝ(a)2 = 1 since g is Boolean, so letting amax

be a maximizer of maxa ĝ(a), we have

Ex,y[g(x) · g(y) · g(x+ y)] =
∑
a,b,c

ĝ(a)3 ≤ ĝ(amax) ·
∑
a

ĝ(a)2 = ĝ(amax)

2.2 LTC soundness: 99% vs. 1%

In general, the soundness of LTC tests has different interpretations depending on the correlation of the

input with the code.

• Suppose the test passes with probability 99%. A stability result shows that if an input passes with

high probability then it is close to some codeword. An example for such a result is Claim 2.2 when

ε is close to 1/2.

• At the other end, if an input passes the codeword test with probability slightly better (say, 1%

more) then a random input, then it is nontrivially correlated with a codeword. Claim 2.2 resides

in this regime as well, when taking ε to be close to 0.

– As a follow-up, we might seek to obtain a list-decoding bound on the number of codewords

that can be nontrivially correlated with the input. For the Hadamard code, this corresponds

to a bound on the number of a ∈ {0, 1}n for which ĝ(a) ≥ ε. Recalling that
∑
a ĝ(a)2 = 1 for

Boolean g, we have that at most 1/ε2 codewords can be ε-correlated with g.2

2.3 The long code

We say that f : {0, 1}n → {0, 1} is a dictator function if there exists i ∈ [n] such that for all x ∈ {0, 1}n

it holds that f(x) = xi. The long code consists of all dictator functions on n bits, and is denoted by

Dict. It’s local test is described below:

2In fact, this bound is tight: A Boolean function f : {0, 1}k → {±1} is bent if |f̂(a)| = 2−k/2 for all a. For any ε = 2−k

consider a bent function f : {0, 1}k → {±1} with domain extended to {0, 1}n by “ignoring” the last n− k coordinates. For
more on bent functions and their applications, see [ODo14, Section 6.3].

Orr Paradise – Lecture 2: 4

Algorithm 2.3. Fix a parameter δ ∈ [0, 1]. Given access to a function f : {0, 1}n → {0, 1}:

1. Sample x, y ∈ {0, 1}n uniformly at random.

2. Sample µ ∈ {0, 1}n according to the following process. For each i ∈ [n], with probability δ sample

µi uniformly at random from {0, 1}, and with probability 1− δ set µi = 0.

3. Accept if and only if f(x) + f(y) = f(x+ y + µ).

Algorithm 2.3 is the same as the Hadamard code test (Algorithm 2.1), except for the addition of a

noise vector µ which is used to distinguish between a dictator function and any other linear function.

Claim 2.4 (Completeness of the long code test). If f ∈ Dict then the long code test accept with

probability 1− δ/2.

Proof. Suppose f(z) = zi for all z. The test passes if and only if µi = 0, which occurs with probability

1− δ/2.

The soundness claim is proved using Fourier analysis so we switch back to multiplicative notation,

replacing addition with multiplication and bit b with (−1)b. In particular, the test checks that g(x)g(y) =

g(x+ y + µ), where µi is uniformly sampled from {±1} with probability δ, and is set to be 1 with

probability (1− δ).

Claim 2.5 (Soundness of the long code test). For a ∈ {0, 1}n, the Hamming weight of a, denoted |a|,
is the number of i ∈ [n] for which ai = 1. For all δ ∈ [0, 1], if g : {0, 1}n → {±1} is accepted by the long

code test with probability at least 1
2 + ε then maxa ĝ(a) · (1− δ)|a| ≥ 2ε.

Claim 2.5 means that if g passes the test with good probability then not only is it correlated with a

multiplicative function χa, but it must be that a is sparse, i.e. that χa depends on few variables.

Proof. The proof follows the proof of Claim 2.2, except we need to account for the noise vector in

Equation (3). For each a ∈ {0, 1}n,

Eµ[χa(µ)] = Eµ

[
n∏
i=1

(−1)aiµi

]
=

n∏
i=1

Eµi
[(−1)aiµi] = (1− δ)|a|

where the rightmost equality is because if ai = 0 then Eµi [(−1)aiµi] = 1, and otherwise Eµi [(−1)aiµi] =

Eµi [(−1)µi] = 1− δ.
Now, just as we calculated Equation (3), we have

Ex,y[g(x) · g(y) · g(x+ y + µ)] =
∑
a,b,c

ĝ(a) · ĝ(b) · ĝ(c) · Ex[χa(x)χc(x)] · Ey[χb(y)χc(y)] · Eµ[χc(µ)]

=
∑
a

ĝ(a)3 · (1− δ)|a| ≤ max
a

ĝ(a) · (1− δ)|a|

3 Hardness of gap(0.99, 1− δ)-3LIN

With these tools in hand, we may now begin working towards a proof of Theorem 0.3. The proof is by

reduction from (a strong version of) the PCP theorem:

Theorem 3.1. For all ε > 0, gap(ε, 1)-LabelCover is NP-hard. Furthermore, NP-hardness holds even

when instances G = (U, V,E,Π) are guaranteed to have the following properties:

Orr Paradise – Lecture 2: 5

Figure 1: An example of a projective constraint Πu,v : [7]→ [3]. Notice how the top layer projects onto
the bottom one.

• Biregularity: any two vertices on the same side (U or V) have the same degree.

• Projectivity: for any {u, v} ∈ E, each σu ∈ Σu has exactly one σv ∈ Σv such that (σu, σv) ∈ Πu,v.

In other words, we can think of Πu,v as a function Πu,v : Σu → Σv. (See Figure 1)

The main idea behind the reduction is to replace each vertex w with 2|Σw| variables (see Figure 2),

and add linear equations asserting that an assigment to these variables corresponds to a long code of a

label σw ∈ Σw that satisfies the constraints in which w participates. Rather than explicitly describing

the system of linear equations, we shall describe a probabilistic verifier of these assertions—the equation

system is obtained by enumerating over the random coins of the verifier just as in the equivalence of the

“proof system” and the “gap(·)-LabelCover” views of the PCP theorem.

Given a biregular and projective instance G = (U, V,E,Π) of LabelCover, create 2|Σw| variables for

each w ∈ U ∪ V . Given access to an assignment, the verifier runs as follows:

1. Sample a uniformly random edge {u, v} ∈ E. Denote the assignment to the 2|Σu| variables created

from u by f : {0, 1}Σu → {0, 1}. Similarly, let g : {0, 1}Σv → {0, 1} denote the assignment to the

2|Σv| variables obtained from v.

2. Do one of the following tests with probability 1/3 each:

(a) Run the long code test (Algorithm 2.3) on f .

(b) Run the long code test on g.

(c) Check that the labels (allegedly) encoded by f and g are consistent with the constraint Πu,v:

uniformly sample x ∈ {0, 1}Σv and y ∈ {0, 1}Σu and check that

f(y) + f(x̃+ y) = g(x) (4)

where, for each σ ∈ Σu, the σth coordinate of x̃ is x̃σ := xΠu,v(σ).

Before turning to the analysis of the reduction, let’s have another look at the consistency test. Suppose

f and g are indeed long codes of labels σu ∈ Σu and σv ∈ Σv, respectively. Then, f(x̃) = x̃σu
= xΠu,w(σu)

and g(x) = xσv
. Now, if σu and σv satisfy Πu,v (i.e., Πu,v(σu) = σv)) then Equation (4) holds for any

choice of x, y.

Why do we add and subtract f(y) to the consistency check? While x is uniformly distributed in

{0, 1}Σv , x̃ is not at all uniformly distributed in {0, 1}Σu , so if we were to check only that f(x̃) = g(x), an

adversary could corrupt an encoding of a non-satisfying label on the support of x̃ so that the consistency

check passes. In other words, step 2a tests that f is close to some long code codeword f ′, but such

closeness only guarantees that f and f ′ agree on a uniformly random input, while x̃ is not uniformly

random. This pitfall is avoided using self-correction: with y ∈ {0, 1}Σu distributed uniformly at random,

the queries to y and y+ x̃ are uniformly random (though dependent), and if f was a valid codeword then

the self-corrected value f(y) + f(y + x̃) will equal the original one f(x̃).

Orr Paradise – Lecture 2: 6

Figure 2: The reduction replaces each vertex (circle) with variables corresponding to the long code of a
label (square). In this example, |Σu| = 3 for each u ∈ U and |Σv| = 2 for each v ∈ V .

3.1 Up next

The reduction almost works (consider the all-zeros assignment). In the next lecture, we will fix the

reduction and analyze its soundness, proving Theorem 0.3.

References

[ODo14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. isbn:

978-1-10-703832-5. url: http://www.cambridge.org/de/academic/subjects/computer-

science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-

boolean-functions.

[Gol17] Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. isbn:

978-1-107-19405-2.

http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

	Discrete Fourier analysis
	Locally testable codes
	The Hadamard code
	LTC soundness: 99% vs. 1%
	The long code

	Hardness of gap(0.99, 1-)(0.99, 1-)(0.99, 1-)(0.99, 1-)- 3LIN
	Up next

