
Hardness Of Approximation

Lecture 3: Proving Hardness of gap(0.99, 1− δ)-3LIN, Subcode Covering

Instructor: Irit Dinur and Amey Bhangale Scribe: Tal Herman

1 Reminder from last week

This week we finish the proof we started last week, showing that gap(0.99, 1 − δ)-3LIN is NP-hard.

Recall that last week we showed a reduction from gap(ε, 1)-LabelCover to gap(0.99, 1− δ)-3LIN. Before

returning to the analysis, let us first review the construction of the reduction once more.

1.1 Reducing gap(ε, 1)-LabelCover to gap(0.99, 1− δ)-3LIN

Given a biregular, projective instance G = (U, V,E,Π) of LabelCover, we create 2|Σw| variables for

each w ∈ U ∪ V . Instead of explicitly describing the set of equations over these variables, we define a

probabilistic verifier of these assertions. The system of equations can be obtained by enumerating over

the random coins of the verifier. We proceed with details of the verifier: given access to an assignment

over the variables, the verifier runs as follows:

• Sample a uniform edge (u, v) ∈ E. Denote the assignment to the 2Σu variables created from u by

fu : {0, 1}Σu → {0, 1}, and similarly, denote by gv : {0, 1}Σv → {0, 1} the assignment to the 2Σv

variables obtained form v. Next, perform one of the following tests, each with probability 1/3:

(T1) Run the long code test with parameter δ (algorithm 2.3 in previous lecture) on fu.

(T2) Run the long code test with parameter δ on gv.

(T3) Consistency test: check that the labels (allegedly) encoded by fu and gv are consistent with

the constraint Πu,v: uniformly sample x ∈ {0, 1}Σv , and y ∈ {0, 1}Σu , and check:

fu(y) + fu(x̃+ y) = gv(x)

Where for each σ ∈ Σu, the σ’th coordinate of x̃ is x̃σ = xΠu,v(σ).

The value of δ as a function of ε will be determined during the proof.

2 Analysis of the reduction

The reduction presented above has a slight flaw in it - the all-zeros assignment passes all tests, but it

is meaningless and provides no information about the original instance. Therefore, we first correct the

reduction enforcing the condition that for every u ∈ U :

fu(x) = fu(x),
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where the bar represents flipping the binary value. In other words, we demand that fu will satisfy the

property that negating all the bits in the input will result with the negation of the output. Clearly, this

condition does not hold for the all-zeros assignment.

2.1 Proving Completeness

Lemma 2.1. If the LabelCover instance is satisfiable, then the value of the 3LIN instance produced

by the above reduction (i.e. the largest possible fraction of simultaneously satisfied equations) is at least

1− δ.

Proof. Let G = (U, V,E,Π) be a completely satisfiable instance of LabelCover, where in a satisfying

labelling the label of vertex u ∈ U is au, and the label of vertex v ∈ V is bv. In the produced 3LIN

instance assign fu = Dictau , and gv = Dictbv , for all u ∈ U and all v ∈ V . It is left to show that the

value of this assignment to the 3LIN instance is indeed greater than 1 − δ. Note that both test T1 and

test T2 will pass with probability of at least 1 − δ, since for every u ∈ U fu(x) = xa, fu(y) = ya, and

fu(x+ y + u) = xa + ya + ηa. Therefore:

fu(x) + fu(y) + fu(x+ y + η) = xa + ya + xa + ya + ηa = ηa

And by definition of η, ηa = 0 with probability greater than 1− δ. The same logic applies to gv as well.

As for test T3, consider u and v as above, with the relevant dictator functions fu and gv associated with

them. Then, for randomly selected y ∈ {0, 1}Σu , and x ∈ {0, 1}Σv :

fu(y) + fu(x̃+ y) + gv(x) = ya + x̃a + ya + xb = x̃a + xb

Recall that under the condition x̃a + xb = 0, the test succeeds. Thus, the probability of success is

Pr (x̃a + xb = 0), but this probability is in fact 1, if labels a and b are indeed aligned with the constraints

Πu,v, since by definition, x̃a = xb, as Πu,v(a) = b.

2.2 Proving Soundness

Lemma 2.2. If the LabelCover instance has value of at most ε, then produced 3LIN instance has value

of at most 0.99

In order to prove this lemma, we first prove several claims. These claims will help us assert that any

3LIN instance produced by the reduction with value of at least 0.99, must have too many vertices that

can be labelled according to the restrictions of the original instance, and therefore, the instance must

have a value of more than ε. Thus, from now on, let us consider an assignment of a produced 3LIN

instance with value 0.99.

Claim 2.3. For at least 1
4 -fraction of the edges, under such assignment, the edge passes all three tests

T1,T2,T3 with probability of at least 0.9. Call this section of edges ”good”.

Proof. Assume by way of contradiction that at most a quarter of the edges are good. Namely, that they

pass each of the three tests with probability greater than 0.9, and consider the value of the relevant 3LIN
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instance:

Pr
(u,v)∈E

[(u, v) passes test] ≤ Pr
(u,v)

[(u, v) passes test | (u, v) is ”good”] · Pr
(u,v)

[(u, v) is ”good”] +

+ Pr
(u,v)

[(u, v) passes test | (u, v) is not ”good”] · Pr
(u,v)

[(u, v) is not ”good”] ≤

≤ 3

4

(
1

3
· 1 +

1

3
· 1 +

1

3
· 0.9

)
+

1

4
· 1 =

8.7

12
+

3

12
=

11.7

12
< 0.99,

where the first inequality on the last line uses the assumption that the good set is upper bounded by 1
4 ,

as well as bounding from above the conditioned probabilities - inside the good set, by 1, and outside the

good set, assuming one test passes with probability at most 0.9. We conclude that the probability that

an edge passes the general test is lesser than 0.99, which implies the value of the instance is smaller than

0.99, and we reached contradiction.

Recall from last lecture that we defined the Fourier coefficient to be f̂u(k) = 〈fu, χk〉 = Ex [fu(x)χk(x)]

for k ∈ {0, 1}Σu (equivalently, for k ⊆ Σu), where χk = (−1)
∑|Σu|
i=1 kixi . The next two claims give us

possible good labels for a vertex incident at a good edge, by reducing Σu and Σv to smaller subsets of

labels which are likely to be coherent with the labelling restrictions of the original LabelCover instance.

This will later help us define a labelling that achieves a large number of satisfied edges. Also, from

now onwards we consider the multiplicative version of the relevant functions and tests, rather than the

additive ones used thus far.

Claim 2.4. If (u, v) is a good edge, then:

1. ∃S ⊆ Σu, 0 < |S| ≤ 1
δ such that f̂u(S) ≥ 0.8

2. ∃T ⊆ Σv, 0 < |T | ≤ 1
δ such that ĝv(T ) ≥ 0.8

Proof. We proved last lecture (claim 2.5 in the notes) that the long code is sound, meaning that if a

function passes the test with probability non-trivially higher than 1
2 , then it is correlated with a sparse

linear function. In this case, it implies that for all δ ∈ [0, 1], if Pr(fu passes test) ≥ 1
2 + ε, then

maxS f̂u(S)(1 − δ)|S| ≥ 2ε. By assumption, on good edges, the test passes with probability of at least

0.9, therefore, setting ε = 0.4, we get:

max
S

f̂u(S)(1− δ)|S| ≥ 0.8

Similarly, for gv:

max
T

ĝv(T )(1− δ)|T | ≥ 0.8

Note that for all |S| > 1
δ it must be then that (1 − δ)

1
δ < 1

e . Therefore, if we assume that S0 =

argmaxS f̂u(S) satisfies |S0| > 1
δ , this will imply that f̂u(S0) ≥ 0.8 · e > 1, which is a contradiction.

Therefore, it must be that |S0| ≤ 1
δ .

Consider such T and S to represent restrictions on possible labels for vertices v and u respectively.

Claim 2.5. Let T and S be defined as in claim 2.4, then T ⊆ Πu,v(S).

Proof. Suppose by way of contradiction that there exists j ∈ Σv such that j ∈ T \ Πu,v(S). Recall that

the edge (u, v) is a good edge, therefore it passes the consistency test, T3, with probability of at least

0.9. Following immediately from the definition of the multiplicative version of T3:

Pr [T3 passes] =
1

2
+

1

2
E [fu(y)fx(t+ x̃)gv(x)] = (?) (2.1)
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We wish to bound this value from above by 0.9, which will contradict the fact that the chosen edge is

good, and thus reach contradiction. From claim 2.4 we know that fu and gv are highly correlated with

χS and χT respectively. Namely:

Pr [fu(y) = χS(y)] =
1 + f̂(S)

2
≥ 0.9

Pr [gv(x) = χT (x)] =
1 + ĝ(T )

2
≥ 0.9

Consider the event of the functions ”disagreeing” on relevant inputs. By the above observations and the

use of union bound:

Pr [fu(y) 6= χS(y) ∨ fu(y + x̃) 6= χS(y + x̃) ∨ gv(x) 6= χT (x)] ≤ 0.1 + 0.1 + 0.1 = 0.3

We use this to bound expression 2.1 from above, splitting the product of the functions inside the ex-

pectancy into two parts - conditioned on agreeing on all evaluated points with the characteristic functions

(happens in probability of at least 0.7), and conditioned on having at least one function in disagreement

(which happens in probability of at most 0.3). In the latter case, we also bound the conditional ex-

pectancy achieved by 1. this yields:

Pr [T3 passes] =
1

2
+

1

2
E [fu(y)fx(t+ x̃)gv(x)] ≤ 1

2
+

1

2
[0.7 · E [χS(y)χS(y + x̃)χT (x)] + 0.3 · 1] (2.2)

=
1

2
+

1

2
[E [χS(x̃)χT (x)] + 0.3] (2.3)

Where the last equality is due to χS(y + x̃) = χS(y)χS(x̃), and the fact that χS(y) · χS(y) = 1. We

are left with evaluating the expression E [χS(x̃)χT (x)]. Indeed:

E [χS(x̃)χT (x)] = E
[
(−1)

∑
i∈S x̃i · (−1)

∑
k∈T xk

]
=

= E
[
(−1)

∑
i∈S x̃i · (−1)

∑
k∈T\{j} xk · (−1)xj

]
=

= E
[
(−1)

∑
i∈S x̃i · (−1)

∑
k∈T\{j} xk

]
· E [(−1)xj ] = 0,

where the first equality on the last line stems from the fact that xj is independent by assumption from

the distribution of the product (−1)
∑
i∈S x̃i · (−1)

∑
k∈T\{j} xk . And since by itself E [(−1)xj ] = 0, the

above result follows. Plugging this result back in equation 2.3 yields:

Pr [T3 passes] ≤ 1

2
+

1

2
[E [χS(x̃)χT (x)] + 0.3] ≤ 0.5 + 0.15 = 0.65

and the contradiction follows from the reasoning presented above.

We now turn to wrap up the proof of the soundness of the reduction, namely, lemma 2.2:

Proof of lemma 2.2. Assume by way of contradiction that an instance of LabelCover with value smaller

than ε produced through the reduction an instance of 3LIN with value of at least 0.99. We can apply

claim 2.3, and conclude that at least a quarter of the edges are ”good”. Fix a good edge (u, v). Consider

the following randomized labelling of the original instance, R: For u, if ∃S such that f̂u(S) > 0.8 and

|S| < 1
δ , pick a ∈ S and assign it to u. Similarly, for v, if ∃T such that ĝv(T ) > 0.8, and pick uniformly

at random b ∈ T and assign it to v. Now:

Pr
(u,v)

[(u, v) is satisfied by R] ≥ 1

4
Pr [(u, v) is satisfied by R | (u, v) is good] ≥ δ

4
,
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where the last inequality is due to the fact that upon choosing a label a for u from S, we need to pick its

proper image under Πu,v, and from claim 2.5, it follows that T ⊆ Πu,v(S), and at worst, T contains 1
δ

elements (when the projection constraint over the edge is ”injective”), thus the probability of choosing

the label corresponding to Πu,v(a) is at least δ. Now, Plugging δ = 5ε we get:

Pr
(u,v)

[(u, v) is satisfied by R] > ε

which is a contradiction, since we assumed the original instance had value smaller than ε, and if the

random labelling succeeded with higher probability, it implies there exists some labelling with value

larger than ε.

Note that the last article also defines the correct value to be assigned to the parameter δ for the

reduction to hold.

3 Subcode Covering

We now wish to improve the previous result and show that gap( 1
2 + δ, 1 − δ)-3LIN is also NP − hard.

In order to show this, we introduce the idea of subcode covering.

Note that in the previous proof, when picking an edge under a certain assignment, we needed to

check the consistency of functions defined by the assignment. Due to the choice of encoding, namely, the

long code, one side ended up being much larger than the other. For example, if we had for some edge

(u, v), |Σu| = 3k, while |Σv| = 3k − 1, then after the reduction, an assignment on u will be represented

by fu : {0, 1}Σu → {0, 1}, which means that the amount of possible different assignments over u is a set

of size 22|Σu| := 2d (denoting d = 23k). For the same reasoning, the amount of possible assignments on

v will be 22|Σv| = 223k−1

= 2
d
2 =
√

2d. We would therefore need
√

2d small codes to cover the larger one

(when, in reality, each vertex v only has 2O(k) = poly(d) neighbours).

This can be put in other words to mean that the long code of k bits, containing all boolean functions

on k bits, doesn’t look like the long code on k−1 bits, or, even more precisely, a typical Boolean function

over k bits doesn’t look like a typical Boolean function over k − 1 bits. This can be seen by observing

that a typical Boolean function over k bits, f(x1, x2, . . . , xk), is not likely to give the same value for all

pairs of strings (α1, α2, . . . , αk−1, 0), (α1, α2, . . . , αk−1, 1) (i.e. all pairs of strings that only differ on a

single entry).

Interestingly, in contract, a typical linear Boolean function over k bits does looks like a typical linear

function over k− 1 bits. Let f be some random linear function on k bits - f(x1, x2, . . . , xk) =
∑k
i=1 aixi

for some (a1, a2, . . . , ak) ∈ {0, 1}k. In a typical such function, half of the ai are 0. This prompts us

to produce a slightly biased random linear function in the following way, ensuring at least one entry is

indeed 0:

1. Choose i ∈ [k].

2. Set ai = 0.

3. Choose aj independently from the set {0, 1}, for j 6= i.

Claim 3.1. Choosing a linear function f over k bits in the manner presented above is ”almost” like

choosing a function defined by a totally randomly chosen k-bit string.
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This claim stems from the fact that forcing only one entry to be 0 results with only a slight bias towards

0 (formally, the statistical distance between the distribution produced by the above procedure and the

uniform distribution over the k bit linear functions is negligible). In fact, even when choosing multiple

random indices (provided that the amount of indices chosen <<
√
k) the claim persists.

3.1 Approaching NP − hardness of gap(1
2
+ δ, 1− δ)-3LIN

The notions presented above promote the idea of replacing the long code by the Hadamard code with

the hope that by doing so, the consistency test will be made simpler. With this in mind, we show the

following theorem:

Theorem 3.2. gap(ε, 1− ε)-LabelCover that satisfies the following conditions:

• Smoothness.

• ”Linear” constraints

is NP − hard

The two conditions presented in the statement - smoothness and linear constraints will be explored

and explained during the proof, that will be presented in the next lecture.

From this theorem we will derive the following theorem:

Theorem 3.3. For any small constant δ > 0, gap( 1
2 + δ, 1− δ)-3LIN is NP − hard.

We give here a sketch of the construction of the reduction underlying the proof of Theorem 3.2:

The reduction starts with an instance of gap(0.99, 1−δ)-3LIN. Choose k << 1
ε , and t <<

√
k. Define:

U = All k-tuples of clauses

V = All k-tuples with k − t clauses and t variables

E = {(u, v) | for each i ∈ [k], ui = vi or vi ∈ ui}

Next week we present the analysis to this construction, as well as explore more deeply the concept

of subcode covering.
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