
Hardness Of Approximation

Lecture 4: Subcode Covering and Proof Gap-3Lin(1
2+ε, 1−ε) is NP-Hard

Instructor: Irit Dinur and Amey Bhangale Scribe: Yotam Dikstein

1 Reminder from Last Week

Last week we proved the following theorem:

Theorem 1.1. For every ε > 0 gap-3Lin(0.99, 1− ε) is NP-Hard.

we now move towards proving the stronger theorem:

Theorem 1.2. For every ε > 0 gap-3Lin(1
2 + ε, 1− ε) is NP-Hard.

In the end of last lesson, we talked about the subcode covering property. Essentially, given a label

cover instance, G = (U, V,E,ΣU ,ΣV , πu,v), we want to encode our assignment to the vertices of U, V by

codes where for all u ∈ U :

1. We can embed the encodings of all the its neighbours v ∈ N(u) in the encoding of u itself.

Furthermore,

2. That the embedings induce a distribution that is statistically close to choosing a bit in the encoding

of u uniformly at random. That is,, that the two following distributions are statistically close 1:

• Distribution D1: Choose a bit in the encoding of u uniformly at random.

• Distribution D2: Choose a neighbour of u, v ∈ N(u). Choose a bit in the encoding of v

uniformly at random, and output the embedded bit in the side of u.

It is not yet clear where this property comes to play. However, one can imagine that if we have this

kind of property, we might be able to encode one side of a label cover instance using the other side.

2 Attempts at Subcode Covering

In this section we describe some unsuccessful attempts for encoding label cover instances with encodings

that have the subcode covering property.

2.1 Encoding with the Long Code

A naive attempt is to just use the encoding we saw in the previous lesson. Namely, We encode the

assignment on u with the long code, that is.

σ ∈ Σu 7→ f ∈ 22ΣU
, f(~x) = xσ,

τ ∈ ΣV 7→ f ∈ 22ΣV
, f(~x) = xτ .

1Our notion of a statistic distance for two distributions that are supported in a set A is ∆(D1, D2) = 1
2

∑
a∈A |D1(a)−

D2(a)|, where Di(a) = Prx∼Di [x = a].

1

Yotam Dikstein – Lecture 4: 2

In the hard instances we know how to create, the alphabet for the left side is larger than the right

side with a factor of at least two, i.e. |ΣU | ≥ 2|ΣV |. In this case, the size of the encoding of some v ∈ V
is smaller than the encoding of u ∈ ΣU by a factor of at least 22

1
2
|ΣU |

.

In particular, even if u has ` neighbours, the support of any distribution D2 is of size ≤ `22|ΣV |
, much

smaller than the support of D1 (i.e. all the embeddings of the neighbours only cover a small portion of

the bits of the encoding of ΣU). Thus we have no chance to get the subcode covering property.

2.2 Encoding with the Hadamard Code

One obstacle in our previous attempt, is the fact that the size of the encoding blows up significantly

when the alphabet increases - this led to the fact that any a-symmetry in the alphabets in each side,

lead to the fact that one side cannot cover the other. To mend this, we will try to encode both sides

with a shorter code.

2.2.1 Parrallel Repetition

Let k ∈ N and let Φ = c1 ∧ ... ∧ cm be some 3SAT instance. Recall the k-parrallel repetition instances

defined in the first homework. Every u ∈ U corresponds to k 3SAT clauses from Φ (ordered), every

v ∈ V corresponds to k variables (ordered). We choose an edge (u, v) ∈ E by:

1. Choosing k clauses c1, ..., ck from Φ uniformly at random and setting u = (ci1 , ..., cik).

2. Choosing one variable xi ∈ ci uniformly at random, and setting v = (x1, ..., xk).

Our assignments for ΣU are all the partial assignments for the variables that appear in (ci1 , ..., cik),

that satisfy all the clauses. Our assignments for ΣV are partial assignments to the variables that appear

in v. Our edge constraints for u, v are consistancy - namely that the partial assignment for the variables

in v agree with the partial assignment for the variables in u. We can see that to encode a symbol in ΣU

we need 3k bits, and to encode a symbol in ΣV we need k bits.

2.2.2 Hadamard Code for Parallel Repeated Instances

One possible encoding for these instances, is the Hadamard code. That is, for an assignment to u ∈ U
(respectfully v ∈ V),

αu = ((α1,1, α1,2, α1,3), ..., (αk,1, αk,2, αk,3)).

we encode by the (truth table of) h : {0, 1}3k → {0, 1}

hαu(x) = 〈αu, x〉.

For any v ∈ V we can embed αv in {0, 1}3k by inserting 0 where we are missing an assignment to a

variable. For example if v = (x1,1, x2,3, x3,3, ..., xk,2) then we can embed αv by thinking about it as

αv = ((x1,1, 0, 0), (0, 0, x2,3), (0, 0, x3,3), ..., (0, xk,2, 0)).

This obviously can be carried on to the Hadamard encoding.

This embedding is better than the long code, for example we can recover any single bit of αu by a

an appropriate choice of v and x. However, note that the vector αv is supported by k bits, and a typical

u is supported by 3k bits. It turns out that the Hadamard encodings of k-bits look typically different

than the encodings of 3k-bits.

Yotam Dikstein – Lecture 4: 3

u = ((x1,1, x1,2, x1,3), (x2,1, x2,2, x2,3), (x3,1, x3,2, x3,3), (x4,1, x4,2, x4,3))

v = ((x1,2), (x2,3), (x3,1, x3,2, x3,3), (x4,1))

Figure 1: Smooth Parallel Repetition

3 A Smooth Parallel Repetition

From the Hadamard encoding attempt we learned that our problem is that we removed too many clauses

from each v - thus the Hadamard encoding of each side look different. We need to remove some variables,

or else v = u and the consistency will mean nothing. Can we create a label cover instance that is hard,

while we remove less variables? The answer is YES!

Definition 3.1 (Smooth Parallel Repetition). Let 0 < β < 1 be some parameter and k ∈ N. Let G0 be

some 3LIN instance. The beta-smooth parallel repetition of G0 is the following label cover instance:

1. Choose k equations uniformly at random and set u = (ci1 , ..., cik).

2. denote v = (d1, ..., dk). For each 1 ≤ i ≤ k with probability β set di = xi for some variable xi ∈ ci
chosen uniformly at random. With probability 1− β set di = ci (i.e. all variables in the equation).

See Figure 1.

In this setting, the usual parallel repetition is the smooth parallel repetition where β = 1.

Let’s examine the hardness of this game:

1. In expectation we play the original game βk-times. Since we do an independent check for every i,

with very high probability we play more than βk
2 .

2. Suppose our original instance had soundness ≤ 0.99. The Parallel Repetition Theorem promised

us that the `-parallel repeated instance has soundness 0.99Θ(`). Thus if we play βk
2 -games with

high probability, then one can show that our soundness behaves like 0.99
βk
2 .

Thus if β = ω(1
k) then the soundness of this game goes to 0 as k approaches infinity (this can of course

be formulated to a proof...).

Now let’s consider the size of u ∈ U and v ∈ V . We still need 3k bits to encode u. For v we need

3k − 2βk bits in expectation (since with probability β we need two bits less). If we take β to be such

that βk ≤
√
k, we can get the subcode covering property.

Fix u ∈ U . Consider the following distributions:

1. D1: Choose x ∈ {0, 1}3k uniformly at random.

2. D2: Choose v ∈ N(u) and y ∈ {0, 1}3k−2β , and embed y in {0, 1}3k by v’s embedding (i.e. put 0’s

on the variables that v doesn’t support, and put the values of y where v is supported)2. See Figure

2.

Obviously these distributions aren’t the same. Typically a vector in D2 will have more zero’s. However,

if we choose beta small enough, these distributions are statistically close:

2Actually, our real distribution is to choose v ∈ V and then choose random bits for each variable in v - this could be
different than 3k − 2βk random bits. However, for simplicity we’ll ignore this subtle point.

Yotam Dikstein – Lecture 4: 4

u = ((x1,1, x1,2, x1,3), (x2,1, x2,2, x2,3), (x3,1, x3,2, x3,3), (x4,1, x4,2, x4,3))

v = ((x1,2), (x2,3), (x3,1, x3,2, x3,3), (x4,1))

y = (1, 0, 1, 1, 0, 1)

y↑u,v = (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0)

Figure 2: D2 illustration

Claim 3.2. The statistical difference between D1 and D2 is O(β
√
k). That is,

∆(D1, D2) =
1

2

∑
x∈{0,1}3k

|D1(s)−D2(s)| = O(β
√
k).

Thus our attempt to prove gap-3Lin(1
2 + ε, 1− ε) will use the following label cover instances:

1. Begin with an instance for gap-3Lin(0.99, 1− ε).

2. Take k = 1√
ε

and β = 1
k0.6 .

3. Do a β-smooth parallel repetition on this instance. We get an instance where:

• If we are at the YES case, i.e. the 1−ε case: we have an instance where at least 1−kε =≈ 1− 1
k

of the edges are satisfied (we ignore β and note that the probability to full on a satisfied

equation is 1− ε for every repetition).

• If we are at the NO case, then by he above our soundness is 0.99Θ(k0.4).

4 The actual reduction

Now we describe the reduction of the instance above to gap-3Lin(1
2 + ε, 1− ε).

Initially we want to encode the assignment of every u ∈ Σu by its Hadamard code, say fu. However,

we fold the assignment, by requiring that for all v ∈ V , all u1, u2 ∈ N(v) and all bits at y in the

Hadamard encoding of the label of v: if y is embedded to x1 := y↑u1v by the embedding to u1, and is

embedded to x2 := y↑u2v by the embedding of u2, then fu1
(x1) = fu2

(x2). Here, y↑u1v ∈ {0, 1}3k is

obtained from y by filling 0 in the ‘missing’ variables locations. See Figure 2.

Our linearity test is as follows (which is easily translated to a 3Lin instance):

1. Choose u ∈ U , that is, (ci1 , ..., cik) uniformly at random. Denote the constant in the right side of

the equation cij by aj (i.e. cj : xj1 + xj2 + xj3 = aj).

2. Select x, y ∈ {0, 1}3k and b1, ..., bk ∈ {0, 1} all uniformly at random and independent.

3. Check that

f(x) + f(y) + f(x+ y +

k∑
i=1

bj`j) =

k∑
j=1

ajbj .

where `j is the vector in {0, 1}3k that is the indicator of the indexes of the variables of cj , that is

one on j1, j2, j3 and 0 everywhere else.

Yotam Dikstein – Lecture 4: 5

This test is very similar to our original linearity test, studied in previous lessons:

f(x) + f(y) + f(x+ y) = f(0).

4.0.1 Why do we add the extra vector
∑k
i=1 bj`j to the test?

Note that if f passes the test with probability 1, then f is a linear function and f(`j) = aj for all

1 ≤ j ≤ k. consider the assignment that gives the variables xj the value f(ej) (f acting on the vector

that has 1 on the j coordinate and 0 everywhere else). Then we know that this assignment satisfies

all k linear equations. Hence our test actually tests that we encoded a linear test that satisfies all the

constraints.

What about soundness? We can prove the following soundness guarantee:

Claim 4.1. Suppose that the test above passes with probability 1
2 +ε. Then there exists some S ⊆ [n] s.t.

χS(`j) = (−1)aj and f̂(S) ≥ 2ε, where f̂(S) is the Fourier coefficient of f in multiplicative notation.

In particular, f agrees with χS on at least 1
2 + ε fraction of the inputs. In other words, the additive

version of f agrees with a linear transformation, that satisfies all the equations, on at least 1
2 +ε fraction

of the inputs.

Proof. We abuse notation and denote by f : {0, 1}3k → {±1} the multiplicative version of f . In this

notation our assumption is that

1

2
+ ε ≤ Pr[f(x)f(y)f(x+ y +

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj = 1].

By the same analysis we did in the second lesson,

Pr[f(x)f(y)f(x+ y +

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj = 1] =

1

2
+

1

2
E[f(x)f(y)f(x+ y +

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj].

We decompose f =
∑
S⊆[n] f̂(S)χS and we get by a similar analysis that

E[f(x)f(y)f(x+ y +

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj] =

∑
S⊆[n]

f̂(S)3E[χS(

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj]. (4.1)

Fix some S ⊆ [n]. Since all bj ’s are are chosen independently, we can write

E[χS(

k∑
j=1

bj`j)(−1)
∑k
j=1 ajbj] = E[

k∏
j=1

χS(bj`j)(−1)ajbj] =

k∏
j=1

E[χS(bj`j)(−1)ajbj].

1. If χS(`j) = (−1)aj then the expression in the expectation is always 1.

2. Otherwise, it is 1 when bj = 0 and −1 when bj = 1. Thus in expectation it is 0.

We conclude that the only terms that remain in the sum are those where χS(`j) = (−1)aj for all

1 ≤ j ≤ k.

Yotam Dikstein – Lecture 4: 6

Hence we get that (4.1) is

=
∑
S⊆[n],

∀j,χS(`j)=(−1)aj

f̂(S)3 ≤ max
S⊆[n],

∀j,χS(`j)=(−1)aj

f̂(S)
∑
S⊆[n],

∀j,χS(`j)=(−1)aj

f̂(S).

In conclusion, we get that

max
S⊆[n],

∀j,χS(`j)=(−1)aj

f̂(S) ≥ 2ε.

	Reminder from Last Week
	Attempts at Subcode Covering
	Encoding with the Long Code
	Encoding with the Hadamard Code
	Parrallel Repetition
	Hadamard Code for Parallel Repeated Instances

	A Smooth Parallel Repetition
	The actual reduction
	Why do we add the extra vector i=1k bj j to the test?

