Hardness Of Approximation

Lecture 5: Finishing NP-hardness of $gap3Lin(\frac{1}{2} + \delta, 1 - \delta)$

Instructor: Irit Dinur and Amey Bhangale

Scribe: Roie Salama

1 Reminder from Last Week

Last week we described a reduction to gap-3Lin. The sketch is as follows:

- 1. Start with an instance I_1 of $gap-3Lin(0.99, 1-\epsilon)$.
- 2. Construct a "Smooth linear Label Cover" by doing smooth parallel repetition on I_1 .
- 3. Construct the final instance I_2 of gap-3Lin.

Check the previous lecture notes for more details. In this lecture, we prove the completeness and soundness of the reduction, thereby finishing the proof of NP-hardness of $gap-3Lin(\frac{1}{2}+\delta,1-\delta)$ for every constant $\delta > 0$.

2 Completeness and Soundness

2.1 Completeness

Claim 2.1. If $val(I_1) = 1 - \epsilon \Rightarrow val(I_2) \ge 1 - k\epsilon$

Proof. In this case, the instance I_1 is $(1-\epsilon)$ satisfiable. We fix this assignment σ to the variables and set f_u to be the Hadamard encoding of σ restricted to the variables in u. Clearly, this assignment satisfies the folding property as it is coming from one fixed global assignment. Now, by union bound for at least $1-k\epsilon$ fraction of U, all the constraints are satisfied by σ . Thus, for these f_u 's, the 3Lin test passes with probability 1. Hence, overall the acceptance probability is $1-k\epsilon$ and thus $val(I_2) \ge 1-k\epsilon$.

2.2 Soundness

Claim 2.2. Assume $\delta \gg O(\beta \sqrt{k})$. If $Val(I_2) \ge \frac{1}{2} + \delta \Rightarrow$ the value of the Label Cover instance $\ge \frac{\delta^4}{128}$

Proof. By averaging, for at least $\frac{\delta}{2}$ of the u's, f_u passes the test with probability greater than $\frac{1}{2} + \frac{\delta}{2}$. Now, using Claim 4.1 from the previous lecture, for every such u we have $|\hat{f}_u(S)| \geq \delta$ for some $S \subseteq [3k]$ such that the vector 1_S satisfies the clauses $C_1^u, C_2^u, \ldots, C_k^u$ (constraints corresponding to u). Call these u's "good", and also these S's "good".

Note that good S's are "rare", in the sense that for every function f_u , at most $\frac{1}{\delta^2}$ of it's coefficients are greater than δ , that follows from the fact that $\sum_S \hat{f}_u(S)^2 = 1$.

For by the sub-code covering property, we have

$$\hat{f}_u(S) := \underset{x \in \{0,1\}^{3k}}{\mathbb{E}} [f_u(x)\chi_S(x)]$$
(Claim 3.2, lecture 4)
$$= \underset{v \in N(u)}{\mathbb{E}} \underset{y \in \{0,1\}^{3k-2\beta k}}{\mathbb{E}} [f_u(y^{\uparrow uv})\chi_S(y^{\uparrow uv}) \pm O(\beta\sqrt{k})$$

$$= \mathbb{E}_{v \in N(u)} [\hat{f}_v(S^{\downarrow_{uv}})] \pm O(\beta\sqrt{k})$$

Here, $S^{\downarrow_{uv}}$ is an operation which takes a string from the domain of f_u to the domain of f_v in a natural way by deleting the extra coordinates. Thus, for a good S, we have

$$\mathbb{E}_{v \in N(u)}[\hat{f}_v(S^{\downarrow_{uv}})] \ge \delta - O(\beta \sqrt{k}) \ge \frac{\delta}{2},$$

assuming $\delta \gg O(\beta \sqrt{k})$. Note that for an edge (u, v) the label pair $(1_S, 1_{S^{\downarrow}uv})$ satisfies the constraint on the edge (u, v) for every good S. Thus, the above inequality says that for a typical neighbor of a good u, the Fourier coefficient corresponding to the projected label is also heavy. More formally, by averaging argument, at least $\frac{\delta}{4}$ fraction of $v \in N(u)$, $|\hat{f}_v(S^{\downarrow_{uv}})|$ is $\frac{\delta}{4}$.

This gives a randomized strategy to get a non trivial satisfying assignment to the Label Cover instance. For every good u, assign a random label from the following set

$$\mathcal{L}_u := \{ 1_S \mid \hat{f}_u(S) \ge \delta \text{ and } 1_S \text{ satisfies } C_1^u, C_2^u, \dots, C_k^u \}.$$

Also, for $v \in V$, assign a random label from the following list

$$\mathcal{L}_v := \left\{ 1_T \mid \hat{f}_v(T) \ge \frac{\delta}{4} \right\}$$

(Here f_v is embedded in f_u and it does not matter which u one chooses, as we get the same function because of the folding.) We know $|\mathcal{L}_v|$ is of size at most $\frac{16}{\delta^2}$. For a good u, $|\mathcal{L}_u| \geq 1$ and suppose we pick a label 1_S . Using the above argument, for at least $\frac{\delta}{4}$ fraction of $v \in N(u)$, the label $1_{S^{\perp}uv}$ is present in \mathcal{L}_v . For such neighbors, the probability that the constraint on (u, v) is satisfied by the randomized labeling is at least $\frac{\delta^2}{16}$ (this is because we have to pick the correct label from a list of size at most $\frac{16}{\delta^2}$). Thus in expectation, for at least $\frac{\delta}{2}$ fraction of u (these are the good u's), for at least $\frac{\delta}{4}$ fraction of the neighbors of u, the constraint is satisfied with probability at least $\frac{\delta^2}{16}$. Overall, at least $\frac{\delta^4}{128}$ fractions of the constraints are satisfied by the randomized labeling in expectation.

Recall that we are setting $k = \frac{1}{\sqrt{\epsilon}}$ and $\beta = \frac{1}{k^{0.6}}$. Thus, the in the soundness case, the value of the Label Cover instance is at most $2^{-\Omega(\beta k)} = 2^{-\Omega(k^{0.4})}$ and hence from the above claim $val(I_2)$ is at most $\frac{1}{2} + O(\beta\sqrt{k})$ in the soundness case for large enough k. Therefore we get that $gap-3Lin(\frac{1}{2} + O(\frac{1}{k^{0.1}}), 1 - \frac{1}{k^2})$ is NP-hard. Setting k a large enough constant proves NP-hardness of $gap-3Lin(\frac{1}{2} + \delta, 1 - \delta)$ for every constant $\delta > 0$.

3 Boolean functions and influence

Definition 3.1. for $f : \{-1, +1\}^n \to \{-1, +1\}$ define its *i*th influence by

$$Inf_i(f) = Pr_{x \sim \{-1,+1\}^n}[f(x) \neq f(x^{(i)})],$$

where $x^{(i)}$ means flipping the *i*-th bit of x.

For example, for the parity function

$$Parity(x_1, ..., x_n) = \prod_{i=1}^n x_i$$

$$\forall i : Inf_i(Parity) = 1$$

It is easy to see that the i^{th} influence is precisely the following:

$$Inf_i(f) = \sum_{i \in S} \hat{f}(S)^2$$

Next, we define

$$Inf_i^{(1-\delta)}(f) = \sum_{i \in S} (1-s)^{|S|-1} \hat{f}(S)^2$$

called the δ -attenuated influence. While there can be as many as n coordinates of a Boolean function whose influence is large (eg. Parity has all the influences 1), it is bounded in case of δ -attenuated influences of any Boolean function.

Claim 3.2. for every $f : \{-1, +1\}^n \to \{-1, +1\}$

$$\mid \{i \in [n] \mid Inf_i^{(1-\delta)}(f) \ge \epsilon\} \mid \le \frac{1}{\epsilon \delta}$$

 $\begin{array}{l} \textit{Proof. } \sum_{i} Inf_{i}^{(1-\delta)}(f) = \sum_{i \in S} (1-\delta)^{|S|-1} \widehat{f}(S)^{2} = \sum_{S \subset [n]} \mid S \mid (1-\delta)^{|S|-1} \widehat{f}(S)^{2} \leq \sum_{S} \frac{1}{\delta} \widehat{f}(S)^{2} \leq \frac{1}{\delta} \\ \text{ and the result follows (because otherwise the sum on the } \epsilon \text{-heavy influences alone would exceed } \frac{1}{\delta} \end{array}$

References