
Hardness Of Approximation

Lecture 6: MAXCUT approximation algorithm and UGC-hardness

Instructor: Irit Dinur and Amey Bhangale Scribe: Tom Ferster

1 Reminder from Last Week

Last week we finished the hardness proof of gap(1
2 + ε, 1− ε)-3LIN. Then, we defined the influence of a

function in order to construct a k-bit dictatorship test.

Definition 1.1 (influence of bit i on f). Let f : {0, 1}n → {−1, 1}. The influence of bit i on f is defined

as:

Infi(f) := Pr[f(x) 6= f(x(i))] =
∑
i∈S

f̂(S)2

where x(i) is the vector x where the i’th bit is flipped.

For any dictator dicti we have infi(dicti) = 1 and infj 6=i(dicti) = 0 but also other parity functions

have high influences, so we defined the following:

Definition 1.2 (δ-influence of bit i on f). Let f : {0, 1}n → {−1, 1}. The δ-influence of bit i on f is

defined as:

Inf1−δ
i (f) :=

∑
i∈S

(1− δ)|S|−1f̂(S)2

Then we showed that f is ”far from dictator” if ∀i ∈ [n] : Inf1−δ
i (f) ≤ ε. We also talked about the

unique games conjecture.

In this scribe I will use a slightly different definition of influence:

Definition 1.3 (k-degree influence of bit i on f). Let f : {0, 1}n → R. The k-degree influence of bit i

on f is defined as:

Infki (f) :=
∑

i∈S, |S|≤k

f̂(S)2

2 MAXCUT Approximation Algorithm

In this section we will show the Goemans-Williamson algorithm [GW95] which approximates the MAX-

CUT problem with ratio 0.878567. For simplicity we will show the algorithm for unweighted graphs, but

it applies to weighted graphs as well.

2.1 The MAXCUT problem

Definition 2.1. Let G = (V,E) be an unweighted graph. The problem is to find a set S ⊂ V such that

the number of edges between S and S̄ is maximized. So the value that should be maximized is |E(S,S̄)|
|E| .

Until 1995 the best approximation ratio known to the MAXCUT problem was 1
2 . The following are

1
2 − approximation algorithms:

1

Tom Ferster – Lecture 6: 2

• Start with an arbitrary set S. As long as there is a vertex in S or in S̄ such that moving it to the

other set increases the cut, move the vertex to the other set. When the algorithm can’t make any

move it means that any v ∈ V has more neighbors on the other set, so the size of the cut is at least
1
2 |E|, which means it must be a 1

2 − approximation algorithm.

• Take a random partition (S, S̄). For any e ∈ E the probability both its endpoints are on different

sides (which means e is in the cut) is 1
2 , so in expectation the size of the cut is 1

2 |E|.

2.2 the Goemans-Williamson algorithm

The algorithm starts with solving a relaxation of the the following integer linear program (ILP), for

which the objective function maximizes the cut in G.

maximize ∑
(i,j)∈E

1− xixj
2

subject to

∀i ∈ V : xi ∈ {−1, 1}

When we take S = {i | xi = 1}, the size of the cut is equal to the objective function value because if

xi = xj then
1−xixj

2 = 0, and if xi 6= xj then
1−xixj

2 = 1.

This integer linear program is NP-hard to solve, so we introduce the following relaxation. We sub-

stitute each variable xi with a unit vector vi ∈ Rn (when n = |V |). We get the following semi-definite

program (SDP), which can be solved optimally using the ellipsoid algorithm (up to a negligible additive

error) :

maximize ∑
(i,j)∈E

1− 〈vi, vj〉
2

subject to

∀i ∈ V : ‖vi‖ = 1.

When all vectors belong to a set of two antipodal vectors {v,−v}, and we define S = {i | vi = v}
(see figure 1) the objective function will represent the size of the cut defined by S, so we have

OPTSDP ≥ OPTILP = MAXCUT (G)

{vi | i ∈ S}v{vi | i ∈ S̄} −v

Figure 1: All vectors belong to {v,−v}.

Therefore, the solution to the SDP is an upper bound on the maximal cut size. We now have to

round the solution in order to get a valid cut.

Let v∗i ∈ Rn be an optimal solution to the SDP. Let r be a random unit vector in Rn sampled from

a spherically symmetric distribution. The coordinates of r are i.i.d from N(0, 1) and then the vector is

normalized. Let H be the hyperplane tangent to r. We use it to divide the vertices to S and S̄.

v∗i · r ≥ 0⇒ i ∈ S

v∗i · r < 0⇒ i ∈ S̄

Tom Ferster – Lecture 6: 3

The algorithm ends by outputting the partition (S, S̄) as shown in figure 2.

v1

v2

v3

v4

S

S̄

H

Figure 2: H divides the vectors to S, S̄.

2.3 Analysis of the Algorithm

In order to find the approximation ratio of the algorithm we have to find the probability each edge is

cut, because

E(|E(S, S̄)|) =
∑
e∈E

Pr(e is cut)

Let (i, j) ∈ E. Lets look at the plane spanned by v∗i , v
∗
j and denote r′ the projection of r on this plane.

since r is spherically symmetric distributed, so is its projection on any plane. The edge (i, j) is cut if

both vectors are on different sides of a line perpendicular to r′. Denote the angle between v∗i , v
∗
j by θi,j ,

so we get Pr((i, j) is cut) =
θi,j
π , as illustrated in figure 3.

Now, since OPTSDP ≥MAXCUT (G), if we divide the value of the rounded solution with the optimal

value of the SDP, we will get a lower bound on the approximation ratio. Since 〈vi, vj〉 = cos(θi,j) we get:

rounded solution value

OPTSDP
=

∑
(i,j)∈E

θi,j
π∑

(i,j)∈E

1−cosθi,j
2

≥ inf
θ∈[0,π]

θ
π

1−cosθ
2

w 0.878567 (2.1)

Therefore, the approximation ratio of the GW algorithm is αGW := 0.878567. In 2002 Feige and Schecht-

man [FS02] showed that this ratio is also the integrality gap of the given SDP, which means the random-

ized hyperplane rounding method is optimal.

3 Hardness of MAXCUT

Now we want to check if the algorithm presented above is optimal. It is only known to be NP-hard to

approximate MAXCUT with ration better than 0.92, but [KKMO07] showed that if we assume that the

UGC is true than the optimal ratio is indeed αGW .

Definition 3.1 (Unique Games). Let G = (U ∪ V,E) be a bipartite graph and L ∈ N. A unique game

is a label cover instance for which each vertex has the label set [L] = {1, 2, ..., L}, and for each edge

Tom Ferster – Lecture 6: 4

vi
r′

vj

θi,j

Figure 3: The polar angle of r is uniform in [0, 2π), and the angles that will divide the vectors to different
sets belong to two intervals of size θi,j each.

the allowed labeling πe : [L] → [L] is a permutation. The optimization problem is to label each vertex

f : U ∪ V → [L] such that the labeling will satisfy the maximum amount of edges. An edge (i, j) is

satisfied if π(i,j)(f(i)) = f(j).

Definition 3.2 (Unique Games Conjecture). ∀ε > 0,∃L such that the problem gap(ε, 1 − ε)-UG is

NP-hard.

It is unknown weather the UGC is true, however if we replace it with gap(ε, 1)-UG it is easy to solve

by guessing the labeling of a single vertex in every connected component, which determines its neighbors

labeling and etc. If we get stuck we replace the value of the first vertex and try again.

We are going to prove the following theorem:

Theorem 3.3 (UGC-hardness of MAXCUT). Assuming UGC is true, it is NP-hard to approximate

MAXCAT better than αGW .

3.1 Gap Problems Reduction

In order to show the hardness of approximation result we first show that ∀ρ ∈ (−1, 0], ε′ > 0 ∃ε > 0 such

that there is a reduction from gap(ε, 1− ε)-UG to gap
(
cos−1ρ
π + ε′, (1− 2ε)(1−ρ

2)
)

-MAXCUT.

We start the reduction with a gap(ε, 1 − ε)-UG instance G = (U ∪ V,E). For each vertex in V we

introduce 2L vertices to the MAXCUT instance. So the set of vertices is V ′ := V × {0, 1}L.

Let ρ ∈ (−1, 0]. We define the edges of the graph using the following distribution D:

• Select u ∈ U uniformly at random.

• Select v, w ∈ N(u) independently uniformly at random.

• Select x ∈ {0, 1}L uniformly at random (represents a vertex from the cloud of v).

• Select y ∈ {0, 1}L (represents a vertex from the cloud of w) as follows: For any i, Pr[yi = xi] = 1+ρ
2

and Pr[yi 6= xi] = 1−ρ
2

We define for x ∈ {0, 1}L and permutation π the following:

x ◦ π ∈ {0, 1}L, ∀i : (x ◦ π)i = xπ(i)

Let πv be the permutation from labels of v to labels of u, and πw from w to u. So the edge we output

according to the sampling is (v× (x◦πv), w× (y ◦πw)). This process defines a distribution over the edges

of G′, so we can think of G′ as a weighted graph where the weights are equal to the relevant probabilities.

Figure 4 partially illustrates the reduction.

Tom Ferster – Lecture 6: 5

u

w

v × {0, 1}L

w × {0, 1}L

e

πv

πw

v

U V

Figure 4: The reduction from a UG instance to a MAXCUT instance

3.1.1 Completeness

Let l : U ∪ V → L be a labeling for the UG instance with value at least 1 − ε. So the probability an

edge is not satisfied is at most ε. We define the partition in the MAXCUT problem by assigning each

vertex v× x in the cloud of a vertex v ∈ V according to fv : {0, 1}L → {0, 1} which is defined as follows:

fv(x) := xl(v).

The value of the cut is equal to∑
e∈E(S,S̄)

weight(e) = Pr
e∼D

(e is in the cut)

Let e ∼ D. e is defined by u, v, w, x, y as defined above: e = (v × (x ◦ πv), w × (y ◦ πw)). suppose that

both edges relevant to e of the label cover are satisfied by l. By the union bound this happens with

probability at least 1− 2ε. We look at the assignment to the endpoints of e.

fv(x ◦ πv) = (x ◦ πv)l(v) = xπv(l(v))

fw(y ◦ πw) = (y ◦ πw)l(w) = yπw(l(w))

Since u is a common neighbor to v, w we have πv(l(v)) = l(u) = πw(l(w)), So according to D the

endpoints are on different sides with probability 1−ρ
2 .

In conclusion we get val(cut) ≥ (1− 2ε)(1−ρ
2).

3.1.2 Soundness

Let fv : {0, 1}L → {+1,−1} be assignments to the MAXCUT vertices with cut value at least cos−1ρ
π + ε′.

We will use it to get a labeling for the UG with value at least ε (will be defined later). The size of the

Tom Ferster – Lecture 6: 6

cut according to the definition of the reduction is as follows:

val(cut) = E
u∈U v,w∈N(u) x,y

[
1− fv(x ◦ πv)fw(y ◦ πw)

2

]

= E
u∈U x,y

1− E
v∈N(u)

[fv(x ◦ πv)] E
w∈N(u)

[fw(y ◦ πw)]

2


(define hu(x) := E

v∈N(u)
[fv(x ◦ πv)])

= E
u∈U x,y

[
1− hu(x)hu(y)

2

]
(define Sρ(gu) := E

x,y
[hu(x)hu(y)])

=
1

2
− 1

2
E
u∈U

[Sρ(gu)]

Sρ(gu) defined above is the stability of gu which measures the noise sensitivity of the function. This

means the correlation of the function with itself after inserting noise as we did when we defined y as x

with entries flipped with probability 1−ρ
2 . We will use now the Majority is Stablest Theorem.

Theorem 3.4 (Majority is Stablest). Let ρ ∈ [0, 1). For any ε > 0 there is a small enough δ > 0 such

that if f : {−1, 1}n → [−1, 1] satisfies:

E[f] = 0

∀i ∈ [n] : Infi(f) ≤ δ

which means f is far from a dictator function, then

Sρ(f) ≤ 1− 2

π
arccos(ρ) + ε

We are going to use a slightly different version of the theorem:

Theorem 3.5 (Majority is Stablest - different version). Let ρ ∈ (−1, 0]. For any ε > 0 there is a small

enough δ > 0 and large enough k > 0 such that if f : {−1, 1}n → [−1, 1] satisfies:

∀i ∈ [n] : Infki (f) ≤ δ

which means f is far from a dictator function, then

Sρ(f) ≥ 1− 2

π
arccos(ρ)− ε

Assuming val(cut) ≥ cos−1ρ
π +ε′ we get by Markov inequality that at least ε′

2 fraction of u ∈ U satisfy:

Sρ(gu) ≤ 1− 2

π
arccos(ρ)− ε′

We call such vertices U -good. By the Majority is Stablest theorem, for any U -good u there is a coordinate

j that satisfies Infkj (gu) ≥ δ. We label u as l(u) = j, and the other not good vertices arbitrarily. We

now get:

δ ≤
∑

j∈S,|S|≤k

ĝu(S)2 =
∑

j∈S,|S|≤k

E
v∈N(u)

[f̂v((π
v)−1(S))]2 ≤

∑
j∈S,|S|≤k

E
v∈N(u)

[f̂v((π
v)−1(S))2] = E

v∈N(u)
[Infk(πv)−1(j)(fv)]

Tom Ferster – Lecture 6: 7

From the equation above we conclude that for at least δ
2 fraction of the neighbors v of u we have

Infk(πv)−1(j)(fv) ≥
δ
2 . We call those vertices V -good. In order to define labels for any v ∈ V we define a

set of candidates:

cand[v] = {i ∈ [L] : Infki (fv) ≥
δ

2
}

Then for any V -good v, (πv)−1(j) ∈ cand[v]. Moreover, since
∑
i∈[L]

Infki (fv) ≤ k we get that |cand[v]| ≤ 2k
δ .

Now we assign each v ∈ V uniformly at random a label in cand[v].

For any U -good u and V -good v, if the candidate that was chosen for v is (πv)−1(l(u)) then the

edge (u, v) is satisfied, and therefore at least ε := (ε
′

2)(δ2)(2k
δ) fraction of the edges are satisfied. This

completes the soundness proof.

3.2 Hardness of approximation ratio

In the previous section, we proved that assuming UGC, ∀ρ ∈ (−1, 0],ε′ > 0,∃ε > 0 such that gap(cos
−1ρ
π +

ε′, (1− 2ε)(1−ρ
2))-MAXCUT is NP-hard. Therefore, we get a hardness of approximation factor of

cos−1ρ
π + ε′

(1− 2ε)(1−ρ
2)

By slightly modifying ρ to move the completeness correction (1− 2ε) into the soundness correction ε′ we

get ∀ρ ∈ [−1, 0], ε′ > 0 the factor:
cos−1ρ
π

1−ρ
2

+ ε′

Choosing ρ = cosθ for the θ that achieves αGW we get a hardness factor of αGW + ε′.

References

[FS02] Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane rounding

technique for max cut. Random Structures & Algorithms, 20(3):403–440, 2002.

[GW95] Michel X Goemans and David P Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of the ACM

(JACM), 42(6):1115–1145, 1995.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan ODonnell. Optimal inapprox-

imability results for max-cut and other 2-variable csps? SIAM Journal on Computing,

37(1):319–357, 2007.

	Reminder from Last Week
	MAXCUT Approximation Algorithm
	The MAXCUT problem
	the Goemans-Williamson algorithm
	Analysis of the Algorithm

	Hardness of MAXCUT
	Gap Problems Reduction
	Completeness
	Soundness

	Hardness of approximation ratio

