
Hardness Of Approximation

Lecture 8: Direct Product testing

Instructor: Irit Dinur and Amey Bhangale Scribe: Amey Bhangale

1 Direct Product Testing

Last week we finished the proof of the parallel repetition theorem using the direct product theorem. In

this lecture, we will complete the full proof by proving the direct product theorem.

Recall the setting in the direct product testing. We have a collection of strings {fS}, for every subset

S of [n] of size at most k. Here fS ∈ {0, 1}S . These are supposedly restrictions of a fixed n bit string.

We need to check if this is the case.

Definition 1.1. {fS} is called perfect if there exists h : [n] → {0, 1} such that fS = h|S for every

S ⊂ [n], |S| ≤ k.

Our goal is to test if a given collection is close to perfect.

Agreement Test with ρ ∈ (0, 1):

1. Choose (vi, v2, . . . , vk) ∈ V k uniformly at random and let S = ∪ivi.

2. For each i ∈ [k], with probability ρ set v′i = vi and with probability (1− ρ) set v′i to be a uniformly

random element from V . Let S′ = ∪iv′i.

3. Accept iff fS |r = fS′ |r, where r = S ∩ S′.

The following theorem is our main goal today (this appeared as Theorem 1.5 in notes for lecture 7).

Theorem 1.2. Let ρ = 0.1 and choose α = 10−5. There exists 0 < γ < 1 (that depends on ρ and α)

such that if {fS} passes the agreement test with probability at least ε := (1− γ)k, then there exists some

r ⊂ [n], |r| ≈ ρk and a function hr : [n]→ {0, 1} such that

PrS⊇r

[
fS
≥(1−α)k

= h|S
]
≥ εO(1),

where the notation
≥(1−α)k

= means that the two strings disagree on at most αk locations.

Note that the amount of sets S that contain r is a very small, sub-constant, fraction of all sets,

roughly n−|r|.

A few remarks about the theorem.

• Naively one would expect a stronger theorem, that guarantees a global function h : [n] → {0, 1}
such that Pr[h|S = fS ] is noticeable when the acceptance probability is above exp(−k). However,

this is too strong a hope when the acceptance probability is exp(−k) as we demonstrate in Section

1.2.

It turns out that if the acceptance probability is k−O(1) then one can in fact conclude that there is

a global function agreeing on k−O(1) fraction of the fS [DG08].
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• As we saw in the previous lecture, even this less-global conclusion, as stated in the theorem, is

enough to prove the parallel repetition theorem with exponential decay.

How can one find the global function hr? Clearly, the natural strategy of defining hr(x) by the value

that is most popular among all {fS(x) | x ∈ S} is not going to work. Here is simple counter example to

this strategy. For each S assign a random string from {0k, 1k} to fS . Clearly, the agreement test passes

with probability at least 1/2, but the plurality strategy gives a random function.

To overcome such examples, the overall idea is to zoom-in to a small subset of {S} such that we enjoy

much stronger agreement among the sets form the subset.

1.1 Graphs associated with the test

The test distribution gives rise to different weighted graphs. Let’s take a look at a few natural graphs

related to the test.

1. DPρ: In this graph, the vertex set is V k (ordered tuples) and the edge set is given by the agreement

test. Starting from (v1, v2, . . . , vk), we move to a neighbor by the following process - for all i ∈ [k]

independently, we keep vi as it is with probability ρ and with the remaining probability, we select

a random vertex from V . The good thing about this graph is that it is a product graph and hence

it is easier to analyze analytically. For example we can get the eigenvalues of this graph by just

knowing the eigenvalues of the base graph.

2. Folded DPρ graph: Here we glue together all the ordered tuples. Thus, in this graph the vertex

set is all subsets of V of size at most k and the edge weight is the total weight of moving from

subset S to subset T in the graph DPρ. The expansion behavior on this folded graph dictates the

expansion behavior on the graph DPρ.

3. Johnson graph J(n, k). Here n is the size of the universe and the vertex set is all k-sized subsets of

n. (S, S′) is an edge in this graph iff S ∩S′ = k− 1. This graph is studied widely in the literature.

The reason this graph is related to the above two graphs is that a short walk (say of length (1−ρ)k

when k � n) on J(n, k) is similar to the previous graphs.

1.2 Expansion of small sets in DPρ

It is very instructive to think of the cases when the direct product test passes with non-negligible

probability but there is no global function agreeing with {fS}. To this end, consider the folded graph

DPρ. In this graph, there are many small sets which do not expand. For example for a fixed subset r of

size � k (even size 1) and consider the family of sets {S | S ⊃ r}. In a typical step in this graph we are

keeping each element in r roughly with probability ρ. Thus, with probability roughly ρ|r| we stay in the

same set {S | S ⊃ r}. This gives a way to create a collection {fS} which will pass the agreement test with

non-negligible probability. For every r of size ρk, take a random function gr and set {fS | S ⊃ r} with

respect to gr (if not assigned previously). In this case, there is no global function correlated with {fS}
but the agreement test passes with probability at least ρ|r|. This is precisely because in the agreement

test we end up selecting (S, S′) from {S | S ⊃ r} for some r with probability ρ|r|. Thus, in this respect

Theorem 1.2 is tight!

Thus, studying small set expansion property in these graphs is instrumental in analyzing such tests.

This is different from the global expansion of the graph which is dictated, through Cheeger’s inequality,

by the second eigenvalue of the associated adjacency matrix.

We will rely on the following theorem regarding small set expansion in the graph DPρ.
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Theorem 1.3 ([MOR+06]). Suppose A,B ⊆ [n]k of size at least ε then

Pr(x,y)∈DPρ [x ∈ A & y ∈ B] ≥ ε
2−√ρ
1−√ρ

A few simple observations regarding the above theorem.

• If ρ = 0 then x and y are totally uncorrelated and hence we get that the probability of the event

x ∈ A and y ∈ B is ε2, as expected.

• If ρ = 1 then x and y are perfectly correlated and if A and B are disjoint then we do get the

probability to be 0. 3) when ρ is somewhere in between, say 1/2, then the lemma non-trivially says

that no matter which sets A and B we take, we have a considerable chance that x ∈ A and y ∈B.

1.3 Proof of Theorem 1.2

Definition 1.4. A restriction r is “good” if there exists g : r → {0, 1} such that the set

Zgr = {S ⊃ r | fS |r = g}

is of size at least Ω(ε).

Claim 1.5. There are at least Ω(ε) fraction of good r, where r is distributed according to the test

distribution.

Proof. This follows from a simple averaging argument.

Consider the following distribution D1: (r, t, S, S′) - Select r ∼ B(k, 1/10), |t − r| ∼ B(k, 4/10),

v1, . . . , vt. Then choose S \ t and S′ \ t.

S1

t

k
10 = |r|

S2

Definition 1.6. r0 is β-excellent if

Pr(r,t,S,S′)∼D1
[fS |r = fS′ |r but fS |t

≥βk
6= fS′ |t | r = r0] < exp(−k).

The notation
≥βk
6= means that the two string disagree on at least βk locations.

In other words, r0 is excellent if for a typical pair of sets S, S′ ∈ Zgr0 agreeing on r0 and whose intersection

is more than r0 also agree on (most of) the remaining intersection. This property is crucial in arguing

that the plurality vote from the set {fS | S ∈ Zgr0} is going to be consistent with many {fS | S ∈ Zgr0}.
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Claim 1.7. There are at least (1− exp(−k)) fraction of r which are β-excellent.

Proof. Consider r0 and consider the family of sets {S ⊃ r0}. Now, based on fS |r0 , we can partition the

sets {S ⊃ r0} into at most exp(r0) parts. Consider a subgraph of the graph DPρ′ on {S ⊃ r0} where we

only consider edges whose both end points are inside the same part in the partition. For an edge (S, S′)

let t = (S ∩ S′) \ r0. We will call an edge (S, S′) good if fS and f ′S agree t on at least (1 − β) fraction

of points. Otherwise we call the edge bad. The excellence property precisely means that the fraction of

bad edges is exp(−k).

An alternate way of choosing D1 is to first select t from the appropriate binomial distribution

B(k, 5/10) and then select r as a subset of t. According to this distribution given that the event

fS |t
≥βk
6= fS′ |t occurs, the probability that fS |r = fS′ |r is 2Ω(−βk). This is because while choosing r we

will have to miss each one of the βk elements from t on which fS , fS′ disagree. Thus,

Pr(r,t,S,S′)∼D1

[
fS |r = fS′ |r but fS |t

≥βk
6= fS′ |t

]
≤ 2Ω(−βk).

An averaging argument shows that there are at most η fraction for r0 such that

Pr(r,t,S,S′)∼D1

[
fS |r = fS′ |r but fS |t

≥βk
6= fS′ |t | r = r0

]
≥ 2Ω(−βk))

η
.

The rest of the r0 are excellent, setting η = exp(−k) proves the claim.

We have a following simple corollary.

Corollary 1.8. There are at least poly(ε) fraction of r which are both good and excellent.

The following claim finishes the proof of the direct product theorem.

Claim 1.9. If r is good (large Zgr ) and excellent then there exists hr : V → {0, 1} such that

PrS∼Zgr [fS
≥αk
6= hr|S ] ≤ εO(1)

We define the function hr on x ∈ [n] \ r by taking plurality of {fS(x) | S ∈ Zgr , x ∈ S \ r}.

We will give a proof sketch here. For a more rigorous proof see [IKW12]. Before proceeding, let us

see why it should work. The reason why plurality works is because we are in the high acceptance regime

inside Zgr . In other words, inside the set Zgr , if we look at a pair of sets whose intersection is more than

r then with high probability (w.p close to 1) they agree on most of the intersection. This is precisely

the excellence property! Thus, once we zoom-in to Zgr , we have a direct product test (a slight variation

as we are only considering whether they mostly agree or not inside the intersection instead of a total

agreement) which accepts with probability close to 1.

In order to use the excellence property, it is desirable to consider the graph DPρ′ where ρ′ = 5 · ρ.

In this graph, we can label edges (S, S′) as ‘good’ if fS |S∩S′
≥(1−β)ρ′k

= fS′ |S∩S′ , and ‘bad’ otherwise.

Since r is excellent, there are many ‘good’ edges. These good edges will contribute towards showing

fS
≥(1−α)k

= hr|S , provided there are many ‘good’ edges inside Zgr . This is because f ’s opinion on only

Zgr is considered while defining hr. A priori, it is not clear why it should be the case that many ‘good’

edges are inside Zgr . This is where we use Lemma 1.3. Thus, using this lemma, there are many good

edges inside Zgr and the plurality decoding works.

Proof. (Sketch) Suppose the claim in not true, this means for a random S ∈ Zgr , fS and hr(S) disagree

on at least αk locations with probability εO(1). Select a random set e ⊆ S \ r of size 0.4k. Then, by
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simple application of Chernoff bound, we get that hr(e) and fS(e) disagree on at least α/2 fraction of the

locations with high probability. However, since we define hr by taking the plurality vote, for a random

e, hr(e) should agree with at least Ω(ε) fraction of fS |e on at least Ω(1) fraction of locations. These two

contradict the excellence property. The starting assumption claims that for a random e and S containing

e, hr(e) and fS |e disagree on many locations, whereas the plurality condition would imply that hr(e) and

fS |e should agree on Ω(1) fraction of points. Both these properties imply that for a random e and S, S′

containing e in Zgr , fS |e and fS′ |e disagree on many locations, contradicting the excellence property of

r.
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