
Hardness of Approximation - Problem Set 1

Due: 25 April 2019

1. In 3-coloring problem, given an undirected graph the task is to color its vertices
with three colors such that no adjacent vertices have the same color.

In Max-3-coloring, the task is to color the vertices of a graph with 3 colors such
that the fraction of edges which are properly colored (i.e. fraction of edges such that
its endpoints get different colors) is maximized.

Show that there exists s < 1, such that given a graph which is 3-colorable, it is
NP-hard to find a 3-coloring which properly colors more s fraction of the edges. In
other words, gap-Max-3-coloring(1, s) is NP-hard for some constant 0 < s < 1.

Hint: Start with the NP-hardness of gap-3SAT(1, s) and recall the NP-completeness
reduction from 3SAT to 3-coloring

2. In the first lecture, we defined g-approximation for maximization problems. We can
similarly define g-approximation for any minimization problems.

g-approximation: A minimization problem P is said to have a g-approximation
algorithm if there exists a polynomial time algorithm such that given an instance
x of P , it always returns a solution with value at most g· OPT, where OPT is the
optimal value of x. Note that in this case, g must be at least 1.

• Vertex Cover: Given a graph G(V,E), find a smallest subset S ⊆ V such that
for any edge (u, v) ∈ E, either u ∈ S or v ∈ S.

• Independent set: Given a graph G(V,E), find a largest subset I ⊆ V such
that no edge is fully contained in I.

A simple observation: if S? is the minimum vertex cover in G, then V \ S? is the
maximum independent set in G.

Suppose you have given a 2-approximation algorithm for Vertex Cover. Consider
the following approximation algorithm for Independent Set problem: Given a graph
G(V,E), use the 2-approximation algorithm for Vertex Cover on G to get a vertex
cover S and output V \ S.

How good an approximation algorithm is this for the Independent Set problem?
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3. In the first lecture, we defined a problem called Label Cover and showed a reduction
from gap-3SAT(1, s) to gap-LC(1, s′) for some 0 < s, s′ < 1.

A 3SAT instance is a CSP over Boolean variables x1, x2, . . . , xn and consists of
collection of constraints C1, C2, . . . , Cm where each Ci is the OR of 3 literals eg.
Ci = x3 ∨ ¬x2 ∨ x7. Recall how we constructed a Label Cover instance from a 3SAT
instance: One side contains a vertex for every clause, the other side contains a vertex
for every variable. A clause vertex is connected to a variable vertex if and only if the
variable is contained in the clause. A set of labels for any variable vertex is {0, 1},
whereas a set of labels for any clause vertex is all strings {0, 1}3 which satisfies the
clause. The projection constraint between the clause vertex and a variable vertex is
just the consistency constraint.

Show that the reduction has the following completeness and the soundness guarantees:

• Completeness: If the 3SAT instance is satisfiable then the Label Cover in-
stance is also satisfiable.

• Soundness: If the value of 3SAT instance is s < 1, then the value of the Label
Cover instance is s′, for some constant s′ < 1.

4. Parallel Repetition and Label Cover: We showed above that gap-LC(1, s′) is
NP-hard for some 0 < s′ < 1.

Consider a following way of amplifying the gap i.e showing gap-LC(1, s) is NP-hard
for small s : Fix t ≥ 1. Start with a Label Cover instance instance G1(L1, R1) and
construct a Label Cover instance G2(L2, R2) as follows:

On the left side of G2, we have a vertex for every ordered tuple of t vertices from
L1. On the right, we have a vertex for every ordered tuple of t vertices from R1 i.e.
L2 = L1 × L1 × . . . ,×L1︸ ︷︷ ︸

t times

and R2 = R1 ×R1 × . . . ,×R1︸ ︷︷ ︸
t times

.

A vertex (u1, u2, . . . , ut) ∈ L2 from the left is connected to a vertex (v1, v2, . . . , vt) ∈
R2 from the right if (ui, vi) are connected in G1, for every 1 ≤ i ≤ t. A valid label set to
a vertex in (x1, x2, . . . , xt) ∈ L2∪R2 is just a tuple of t label set such that the ith label
is a valid label to xi. A label (α1, α2, . . . , αt) to (u1, u2, . . . , ut) ∈ L2 and and a label
(β1, β2, . . . , βt) to (v1, v2, . . . , vt) ∈ R2 satisfy the edge ((u1, u2, . . . , ut), (v1, v2, . . . , vt))
if and only if (αi, βi) satisfy the projection constraint between (ui, vi) from G1. Ideally,
we would like the following completeness and soundness guarantees:

• Completeness: If the G1 is satisfiable then G2 is also satisfiable.

• Soundness: If the value of G1 is s′ < 1, then the value of G2 is s, where s→ 0
as t increases.

(a) Show that the completeness guarantee holds.

2



(b) An assignment to the Label Cover instance G2 is called a direct product
assignment if it is coming from a fixed assignment to the vertices of G1 i.e. fix
an assignment σ to L1 ∪R1 and this naturally gives an assignment to L2 ∪R2,
where a vertex (x1, x2, . . . , xt) ∈ L2∪R2 gets a labeling (σ(x1), σ(x2), . . . , σ(xt)).
Show that for any assignment to the Label Cover instance G2 which is a direct
product assignment, the value goes to 0 as t increases, if the value of G1 is at
most s′ for some constant s′ < 1.
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