Lecture 14 - codes from expanders $E: \{0,1\}^{k} \longrightarrow \{0,1\}^{k}$ $\forall x \neq y \in \{0,1\}^{k} \qquad E(x) \text{ is far from } E(y)$ $dist (E(x), E(y)) \ge \Delta \cdot h$ $E(\{0,1\}^{k}) =: C$ |L|=h |R|=m $C(G) = \{x \in \{0,1\}^{k} | \forall r \in R \ \sum_{i \in P(r)} x(i) = 0 \text{ and } 2\}$ $dim C \ge n-m$

 $\alpha = D(1-\xi)$

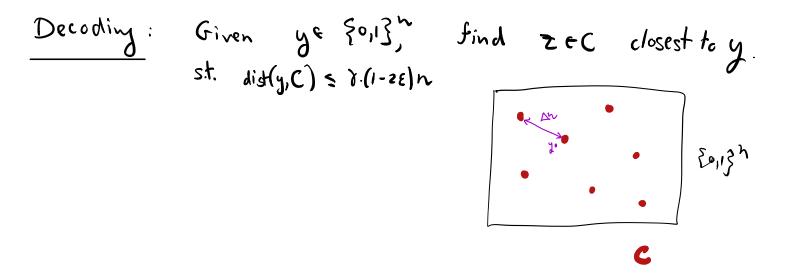
Definition 1 A $(n, m, D, \gamma, \alpha)$ bipartite expander is a D-left-regular bipartite graph $G(L \cup R, E)$ where |L| = n and |R| = m such that $\forall S \subseteq L$ with $|S| \leq \gamma n$, $N(S) \geq \alpha |S|$.

Theorem 2 $\forall \epsilon > 0, m \leq n, \exists \gamma > 0 \text{ and } D \geq 1 \text{ such that } a (n, m, D, \gamma, D(1 - \epsilon)) \text{ expander exists.}$ Additionally, $D = \Theta(\frac{\log(n/m)}{\epsilon})$ and $\gamma n = \Theta(\frac{\epsilon m}{D})$.

Lemma 3 Let G be a $(n, m, D, \gamma, D(1 - \epsilon))$ expander graph with $\epsilon < 1/2$. For any $S \subseteq L_G$ such that $|S| \leq \gamma n, U(S) \geq D(1 - 2\epsilon)|S|$.

where US) = gueR | whos exactly one ubr in 5 }

Theorem 4 Let G be a $(n, m, D, \gamma, D(1-\epsilon))$ expander. Then $\Delta(C(G)) \ge 2\gamma(1-\epsilon)n$. (exercise)



Lemma 5 If the number of errors is at most than γn (and at least 1), then there exists a node in L_G which is adjacent to more than D/2 unsatisfied checks. (This assumes that $\epsilon < 1/4$.)

Every unique nor is an unsat constraint. There are $D(1-2\epsilon) \cdot |s|$ unique nors s = set of errors $|s| \leq Th$. On any vertices in S have $\geq D/2$ unique nors $\exists s \in S$ is this property.

Lemma 6 If we start with a received word having less than $\gamma(1 - 2\epsilon)n$ errors then we can never reach a word with γn errors in any interim step of the algorithm.

< (1-22) &n. D is an upper bound on #unhappy it s was of size in (S = set of bits that are in error) Swould have ? Sh. (1-2E). D unique Hors (all are unhoppy) Shas ISI. (1-2E)D unique ubrs ISIERN # unhappy # noise bits

instead, define
$$C(G,C_0)$$
 differently.
Let $G=(v,E)$ be d-reg graph Let $G_0 \subset g_{0,1}g^{d}$
Def $T(G,C_0) = g \times e g_{0,1}g^{E}$ | $V_{veV} \times |_{E(v)} = C_0 g$

Theorem 15 Let $C_0 \subset \mathbb{F}_2^d$ have distance $\geq \delta_0 d$. Then the relative distance of $T(H, C_0)$ is $\geq \delta_0(\delta_0 - \frac{\lambda}{d})$

