Constraint Satisfaction Problems (csP_s)

CSP as an maximization problem:
Sind an assign to vars, sat max num of constraints.

$$f: family of constraints X_1 + ... + X_k = 0 \leftarrow X_1 + ... + X_k = 1 \leftarrow X_1 + ... + X_k = .$$

$$= \max - 3SAT$$

$$= \max - KLIN$$

$$= \max - KLIN$$

$$= \max - cut (max 2LIN)$$

$$PCP them - S all of these are hand to apx (1-E): X
$$T = \max if \text{ promised } x=1 (3 \text{ assign sat loops})$$

$$= \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance$$

$$= \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$

$$= \max - \sum_{\substack{n=1 \\ n \neq n \leq n}} \frac{1}{2} \exp in a 3SAT instance (k>2).$$$$

input w E 20,13^h d^{k-1}
Joh: Find 2 e joh3^h c.t.
$$\pi(v_1) + \dots + \pi(v_k) = u_k(v_1, v_k)$$

mod 2.
Thum (Granh Jeronimo Quintana Srivadora Thilsian, (2020))
it k-lin instana ^b "splittable" Hen we can
approximate very well." F
VA V^k2
k 2
k 2
Vk V
k 2
k 2
Vk V
k 2
V 0
V¹
V¹
V 0
V¹
V¹
V 0
V¹
V 0
V¹
V¹
V 0
V¹
V¹
V 0
V¹
V¹
V¹
V 0
V¹
V¹
V 0
V¹

~>

(2-LN)

Random instances ? -> Feige R3SAT conj - hard to decide between • random instances • planted instances.

Let G be the constraint graph.
$$\lambda_2 = \lambda_2(G)$$

(normalized)
alg s.t. if val $\ge 1 - \Sigma$
alg finds an assign ω val $1 - \frac{\varepsilon}{(4-\lambda_2)}$, $\lg \frac{\varepsilon}{(1-\lambda_2)}$.

Claim: an assignment in val
$$\geq 1-\varepsilon$$

gives a cut in b' with ε trac of edges of S
leaving S. S.S
Proof:
Observe: if ε direct than ε' is also direct (the relified)
 ε and ε' is a standard direction of ε' assign
 ε' is a sk-cycle.
G
Proof: Suppose ε us instance, let a: $V \rightarrow \varepsilon'$ assign
 Γ assign
 Γ as $k - cycle.$
G
Proof (a(w), a(v)) $\in \pi_{w}$] $\geq 1-\varepsilon$
 $\pi_{w} \leq \varepsilon'$ is a second control of τ' assign
 Γ as $\xi' = \frac{1-\varepsilon}{1-\varepsilon}$
 $\Gamma_{w} \leq \varepsilon'$ is a second of ε' instance st a has val = 1.
Clearly S is disconnected in (ε') (the instance of ε'
 $The only edges leaving S in G'
 $are a bore edges $\varepsilon^{\kappa} = edges$ filsified by α .$$

\

Special case of U.G.
$$2-LIN(r)$$
.
 $X_{U}-X_{V} = C_{UV} \quad \forall edge \quad U \sim V$
 $3+1 \quad 7+1$
Claim: Let $q: V \rightarrow [r]$
Let $a' = q+1 \mod r$
 $Val(q) = Val(q')$

$$S_{A} = \begin{cases} (v, a(v)) : v \in V_{G} \end{cases}$$

$$S_{A} = S_{a+1} = S_{a+2} = - S_{a+r-1}$$

$$ALG : Given G expanding 2 - LIN(r) instance.$$

$$Gonstruct G'.$$

$$Gind r top eigenvectors for Ac' y - yr$$

$$\rightarrow \quad \text{find a sparse cut u 1 vertex ponfilter} \\ \text{in the span of } y_{1} - y_{n} \quad \text{set } \xi_{n}(y_{1}) : d_{1}(\xi_{n}) = \xi_{n}(\xi_{n})^{2} \\ \hline \text{Analysis}: \\ Define = z_{0} \dots z_{n-1} \text{ indicator for } S_{n+1} \text{ indicator for } S_{n+1$$

 $2^{2^{2}} \int \frac{1}{\varepsilon^{s}} \exp(\frac{1}{\varepsilon^{2}})$ useful for CSPs on dense instances. ~~> Reg lemma for "splittable tuples"