Sparsest cut — Leighton-Rao LP relaxation

\[G = (V, E) \]

\[M \text{ adj matrix} \]

\[\phi(G) = \min_{x \in \mathbb{R}^{|V|}} \frac{1}{k} \sum_{i,j} |x_i - x_j| \]

\[\text{s.t. } \sum_{i,j} M(i,j) |x_i - x_j| \leq 1 \]

\[G \] can be \(k \)-regular.

Example: Euclidean distance \(l_2 \)-metric

\[\| \mathbf{u} - \mathbf{v} \|_2 \]

Example: Shortest-path-in-a-graph metric

Example: Cut metric: Fix graph \(G \), cut \((S, \overline{S})\)

\[\text{dist}(u, v) = |\mathbf{1}_S(u) - \mathbf{1}_S(v)| \]

Since cut metrics are metrics.
The cut cone

Suppose \(S, T \) sets, \(d_S \) cut metric
\(d_T \) cut metric.

\[
d' = \alpha \cdot d_S + \beta d_T \\
\text{(\(\alpha > 0 \)) \text{(\(\beta > 0 \))}
\]

We think of \(a \) metric as \(d \in \mathbb{R}^{(h)}_{>0} \)

The set of all metrics is convex (called a cone)

\[
\text{Def } \text{CUT}_n = \text{conv. hull of all cut metrics on } n \text{ pts.}
\]

Thus: The cut cone \(\equiv \) all \(l_1 \)-metrics.

Proof:
\(\text{CUT}_n \subseteq \text{all } l_1 \)-metrics

Clearly a cut metric is an \(l_1 \)-metric
ves \(\sim 1 \in \mathbb{R} \)
\(\forall \text{ } S \sim a \in \mathbb{R}. \)

Suppose \(d = \sum_{S} d_S \) \(S \) cut metric \((S,S)\).

Suppose we have \(S_1 \ldots S_m \)

we map \(V \to \mathbb{R}^m, (|V|=n) \)

\[
\chi_i(V) = \begin{cases}
1 & \text{if } S_i \in V \\
0 & \text{if } S_i \notin V
\end{cases}
\]

we will see \(\min \sum_{S} d_S \) a\(\text{p.x. factor.} \)
\[\forall u, v \in V \quad d(u, v) = \| \phi(u) - \phi(v) \|_1 \]

\[\| \phi(u) - \phi(v) \|_1 = \sum_{i=1}^{m} |\phi_i(u) - \phi_i(v)| = \]

\[= \sum_{i=1}^{m} \alpha_{s_i} |s_i(u) - s_i(v)| = \sum_{i=1}^{m} \alpha_{s_i} d_{s_i}(v) = d(u, v). \]

\(\ell_1 \)-metrics \subseteq \text{cut}_n:

Step 1: Suppose \(d \) is an \(\ell_1 \)-metric.

\[d = \sum_{i=1}^{m} d_i, \quad \text{where } d_i \text{ is } 1\text{-dim } \ell_1\text{-metric.} \]

\[\exists \phi : V \to \mathbb{R}^m, \quad d(u, v) = \sum_{i=1}^{m} |\phi_i(u) - \phi_i(v)| \quad \text{(take } \phi_i(u) = \phi_i(v) \text{)} \]

\[\& \text{def } d_i(u, v) = |\phi_i(u) - \phi_i(v)|. \]

Step 2: Suppose \(d \) is an \(\ell_1 \)-metric \(1 \)-dimensional.

\[\exists \phi : V \to \mathbb{R} \]

Let \(\alpha_1, \ldots, \alpha_n \) = values of \(\phi \).

Define \(n-1 \) cuts \(S_i = \{ v \in V \mid \phi(v) \leq \alpha_i \} \)

\[\text{want to find } p \text{ st. } d = \sum_{i=1}^{n-1} \beta_i \cdot d_{S_i} \quad \text{where } \beta_i = \alpha_{i+1} - \alpha_i. \]

Remark: Suppose \(d \) an \(\ell_1 \)-metric

\[\sum_{i,j} M(i,j) d_{i,j} \leq \lambda \]

\[\sum_{i,j} d_{i,j} \cdot \beta \]

Then we can algo. find a cut with value \(\lambda \).

\[\sum_{i,j} M(i,j) d_{i,j} - \sum_{i,j} d_{i,j} \leq 0 \]

\[\sum_{i,j} \beta_{s_i} \left(\sum_{i,j} M(i,j) d_{i,j} - \sum_{i,j} d_{i,j} \right) \leq 0 \]
∀ S s.t. \(\exists \) cut \(S, \bar{S} \) has value \(\leq \alpha \).

Alg: we can run an LP to find a metric \(\delta \) with smallest sparsity.

Metric embedding

Given \(d : V \times V \to \mathbb{R}_{\geq 0} \), a metric

we want \(\psi : V \to \mathbb{R}^m \) (some \(m \in \mathbb{N} \))

s.t. \(\frac{1}{\log n} \| \psi(u) - \psi(v) \|_1 \leq d(u,v) \leq \| \psi(u) - \psi(v) \|_1 \)

(let \(d_\psi(u,v) = \| \psi(u) - \psi(v) \|_1 \)).

Thm: Every metric \(d \) embeds into \(L_1 \) with distortion \(o(\log n) \).

\([B, LLR]\) dim of embedding is \((\log n)^2 \).

\[\begin{align*}
\alpha &= \frac{\sum_{i,j} M(i,j) d(i,j)}{\sum_{i,j} d(i,j)} \\
&\geq \frac{\sum_{i,j} M(i,j) d_\psi(i,j)}{\sum_{i,j} d_\psi(i,j)} \cdot \log n
\end{align*} \]

\(\Rightarrow \) \(d_\psi \) has value \(\alpha \cdot \log n \)

\(\Rightarrow \) can find a cut \(\delta, \bar{\delta} \) from \(d_\psi \) w value \(\alpha \cdot \log n \).

Since the best cut has sparsity \(\geq \alpha \), our alg finds a \(\log n \)-approximation.

How good is this LR-approx for sparsest cut?

\(\log n \) is correct, as can be seen by \(G \) an expander:
\[G \quad \text{k-regular} \]
\[r \leq \log_k n - 1 \]
\[\text{s.t.} \quad k^r < \frac{n}{2} \]

\[\sum_{i,j} d(i,j) \approx r^2 n^2 \]

Spectral alg & LR-alg

* mapping vectors into \(l^2_2 \)
* mapping \(d \rightarrow l \)

\[\sum_{i,j} (x_i - x_j)^2 \]

\[\sum_{i,j} |x_i - x_j| \leftarrow l \]

ARV showed a semi-def. prog. \(\sqrt{\log n} \)

\[\forall u,v \quad d_{u,v} \geq 0 \]

\[d_{u,v} \leq d_{u,w} + d_{w,v} \]

normalization \(\bigoplus d_{u,v} = 1 \)

\[\max_x \sum_{u,v} E(M(u,v) d_{u,v}) \]