Expanders - exercise 1
Instructor: Irit Dinur
Due: Monday, November 16, 2020

Instructions: Please join into small groups, work together and submit together. Ideally I am hoping for groups of 2-4 students. Please type your solutions using LaTeX. Please submit your file to https://www.dropbox.com/request/u8qBSy3guCcr1hymJY1o

1 Super concentrators

- Let \(G \) be a graph with special vertex sets \(I, O \subset V \). Suppose that for every \(k \) and every \(S \subseteq I \) and \(T \subseteq O \) with \(|S| = |T| = k \), there are no \(k-1 \) vertices whose removal disconnects every \(s \in S \) from every \(t \in T \). Show that \(G \) is a super-concentrator.

- A linear circuit is a circuit where every gate computes a linear function of the inputs. Let \(A \) be a super-regular matrix. Show that the graph of a linear circuit computing the transformation \(x \mapsto Ax \) is a super concentrator.
 (Recall that a super-regular matrix is a square matrix such that any square sub-matrix has full rank).

2 Good error correcting codes

Show that there exists some \(\epsilon_0 > 0 \) such that for every \(n \) there is a code with relative rate at least \(\epsilon_0 \) and relative distance at least \(\epsilon_0 \). Hint: For a fixed distance, say \(\delta = 1/4 \), construct a code with distance \(\delta \) by adding codewords greedily, and show that you can squeeze in sufficiently many codewords.

3 Amplification of soundness in randomized algorithms

An \((n, n, d)\)-graph is a bipartite graph with \(n \) vertices on each side and the degree of each left vertex is \(d \). The graph has property \((exp)\) if for every subset \(S \) of left vertices with size at most \(\frac{2}{d} n \), the set of neighbors of \(S \) has size at least \(\frac{4}{3}|S| \).

- Show that a random \((n, n, d)\) graph obtained by having each left vertex choose \(d \) random vertices has property \((exp)\) with probability greater than 3/4. You may assume that \(n, d \) are large enough.

- Deduce that for every set \(B \) of right vertices of cardinality less than \(n/2 \), if \(S \) is a set of left vertices such that \(\Gamma(S) \subseteq B \), then \(|S| < \frac{2}{3}n \).

- Let \(G \) be an \((n, n, d)\) graph with property \((exp)\), such that \(n = 2^k \). Suppose \(A(\cdot, \cdot) \) is a randomized algorithm for deciding a language \(L \) such that \(A \) uses \(k \) bits of randomness and has one-sided error of 1/2. Show, using \(G \), an algorithm that uses the same number of random bits \(k \) but has soundness error of \(2/d \).