Homework 2 high dimensional expanders

January 10, 2023

You may work in groups of 2-3 students. Please write up your homework in $L a T e X$ and submit the pdf by 24.1.2022 to yotamd@weizmann.ac.il. Please feel free to approach Yotam or Irit with any questions.

1 Link expansion in Kaufman and Oppenheim's graphs

Let p be some prime. In this question all polynomials are over \mathbb{F}_{p}. This proof first appeared in [OP22].

1. Let $Y=(L, R, E)$ be the bipartite graph that is a link in the Kaufman Oppenheim complex. That is,

$$
L=R=\{(\ell(x), Q(x)) \mid \operatorname{deg}(\ell(x)) \leqslant 1, \operatorname{deg}(Q(x)) \leqslant 2\}
$$

and

$$
(Q(x), \ell(x)) \sim\left(Q^{\prime}(x), \ell^{\prime}(x)\right) \Leftrightarrow Q^{\prime}(x)-Q(x)=\ell(x) \ell^{\prime}(x)
$$

Show that two vertices $(\ell(x), Q(x)),\left(\ell^{\prime}(x), Q^{\prime}(x)\right) \in L$ have distance 2 if and only if there exists two linear polynomials $\ell_{1}(x), \ell_{2}(x)$ so that

$$
\left(\ell^{\prime}(x), Q^{\prime}(x)\right)=(\ell(x), Q(x))+\left(\ell_{1}(x), \ell_{1}(x) \ell_{2}(x)\right)
$$

2. Let G be a group and $S \subseteq G$ be so that for all $s \in S, s^{-1} \in S$. The Cayley graph $\operatorname{Cay}(G, S)$ is a graph whose vertices are the elements in G, and $a \sim b$ if $b=a \cdot s$. Show that the two-step walk of the left side of Y is isomorphic to a Cayley graph $\operatorname{Cay}(G, S)$ where $G=\mathbb{F}_{p}^{5}$ and

$$
S=\left\{(a, b, a c, a d+b c, b d) \mid a, b, c, d \in \mathbb{F}_{p}\right\}
$$

3. Let $\omega=e^{2 \pi i / p} \in \mathbb{C}$. Let $\mathbf{r}=\left(r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right) \in \mathbb{F}_{p}^{5}$. Show that the function $f_{\mathbf{r}}: \mathbb{F}_{p}^{5} \rightarrow \mathbb{C}, f_{\mathbf{r}}(\mathbf{x})=\omega^{\langle\mathbf{r}, \mathbf{x}\rangle}$ is an eigenfunction of the adjacency operator of $\operatorname{Cay}\left(\mathbb{F}_{p}^{5}, S\right)$. Show that its eigenvalue is $\mathbb{E}_{s \in S}\left[f_{\mathbf{r}}(s)\right]$. Here $\langle\mathbf{r}, \mathbf{x}\rangle=\sum_{i=1}^{5} r_{i} x_{i}(\bmod p)$.
4. Fix some $\mathbf{r} \in \mathbb{F}_{p}^{5}$. Let $h_{1}(c, d)=r_{1}+r_{3} c+r_{4} d$ and $h_{2}(c, d)=r_{2}+r_{4} c+r_{5} d$. Show that

$$
\underset{s \in S}{\mathbb{E}}\left[f_{\mathbf{r}}(s)\right]=\underset{c, d}{\mathbb{E}}\left[\underset{a}{\mathbb{E}}\left[\omega^{a \cdot h_{1}(c, d)}\right] \cdot \underset{b}{\mathbb{E}}\left[\omega^{b \cdot h_{2}(c, d)}\right]\right]
$$

Conclude that $\mathbb{E}_{s \in S}\left[f_{\mathbf{r}}(s)\right]=\mathbb{P}_{c, d}\left[h_{1}(c, d)=h_{2}(c, d)=0\right]$.
5. Assume that $\mathbf{r} \neq(0,0,0,0,0)$. Show that $\mathbb{P}_{c, d}\left[h_{1}(c, d)=h_{2}(c, d)=0\right] \leqslant \frac{1}{p}$. Use this to bound the non-trivial eigenvalues of the two-step walk of the left side of Y, and conclude that Y is a $\frac{1}{\sqrt{p}}$-one-sided spectral expander.

2 Coboundary and cosystolic expansion

In this question we will show that the complete three partite complex is a $\frac{1}{100}$-coboundary expander in dimension 1. Let X be $X(0)=A \cup B \cup C$ where A, B, C are three disjoint sets of size $n>0$ and $X(2)=\{\{a, b, c\} \mid a \in A, b \in B, c \in C\}$.

Let $f: X(1) \rightarrow\{0,1\}$ be a function so that

$$
w t(\delta f)=\frac{|\{\{a, b, c\} \in X(2) \mid \delta f(\{a, b, c\}) \neq 0\}|}{n^{3}} \leqslant \varepsilon
$$

Our goal is to find some $g: X(0) \rightarrow\{0,1\}$ so that $\frac{1}{100} \operatorname{dist}(f, \delta g) \leqslant \varepsilon$.
This exercise guides you towards one proof. You may instead think about another proof if you like.

1. Explain in your own words why finding some $g: X(0) \rightarrow\{0,1\}$ so that $\frac{1}{100} \operatorname{dist}(f, \delta g) \leqslant \varepsilon$ shows that X is an $\frac{1}{100}$-coboundary expander.
2. Let $G=(L, R, E)$ be a complete bipartite graph with n vertices on every side. Let $f: E \rightarrow\{0,1\}$ be a function so that

$$
\underset{b_{1}, b_{2} \in B, c_{1}, c_{2} \in C}{\mathbb{P}}\left[f\left(b_{1} c_{1}\right)+f\left(c_{1} b_{2}\right)+f\left(b_{2} c_{2}\right)+f\left(c_{2} b_{1}\right) \neq 0\right] \leqslant \varepsilon
$$

Where the probability is over sampling $b_{1}, b_{2} \in L$ and $c_{1}, c_{2} \in R$ uniformly at random and independently. Show that there exists a function $g: L \cup R \rightarrow\{0,1\}$ so that $\operatorname{dist}(f, \delta g)=$ $\mathbb{P}_{b \in L, c \in R}[f(b c) \neq g(b)+g(c)] \leqslant \varepsilon$.

Hint: Think about the proof of coboundary expansion for the complete complex.
3. Construct g for $B \cup C$ only as follows.
(a) Show that

$$
\underset{b_{1}, b_{2} \in B, c_{1}, c_{2} \in C}{\mathbb{P}}\left[f\left(b_{1} c_{1}\right)+f\left(c_{1} b_{2}\right)+f\left(b_{2} c_{2}\right)+f\left(c_{2} b_{1}\right) \neq 0\right] \leqslant 4 \varepsilon
$$

Where the probability is over sampling $b_{1}, b_{2} \in B$ and $c_{1}, c_{2} \in C$ uniformly at random and independently. Conclude that exists $g: B \cup C \rightarrow\{0,1\}$ so that $\operatorname{dist}_{B C}(f, \delta g) \leqslant 4 \varepsilon$, where $\operatorname{dist}_{B C}(f, \delta g)=\mathbb{P}_{b \in B, c \in C}[f(b c) \neq g(b)+g(c)]$.
4. Let us extend g to the vertices of A according to the majority vote. That is, for every $v \in A$ we set $g(v)=\operatorname{maj}\{f(u v)+g(u) \mid u \in B \cup C\}$. Show that $\operatorname{dist}(f, \delta g) \leqslant 100 \varepsilon:$
(a) Use the item $2 b$ to bound the distance between f and δg for edges between B and C (this is supposed to be immediate).
(b) Let $v \in A$. Show that $f(v u) \neq g(v)+g(u)$ if and only if u doesn't agree with the majority vote for v.
(c) Let $M I N_{v} \subseteq B \cup C$ be the sets of the vertices that don't agree with the majority vote on v. Show that $\frac{\left|M i n_{v}\right|}{8 n} \leqslant \frac{\left|E\left(M I N_{v}, B \cup C \backslash M I N_{v}\right)\right|}{n^{2}}$.
(d) Show that if $u w \in E\left(M I N_{v}, B \cup C \backslash M I N_{v}\right)$ then either $\delta f(u v w) \neq 0$, or $f(u w) \neq g(u)+g(w)$.
(e) Use the two items above to bound the distance of f and δg over edges that contain a vertex in A. Get the desired bound on $\operatorname{dist}(f, \delta g)$.

3 Agreement and robust testability

Definition 3.1 (agreement testability). Let $\kappa>0$. Let $C_{i} \subset\left\{f:\left[n_{i}\right] \rightarrow\{0,1\}\right\}$ for $i=1,2$. We say that $C_{1} \otimes C_{2}$ is κ-agreement testable if for every $w_{1} \in C_{1} \otimes\{0,1\}^{n_{2}}, w_{2} \in\{0,1\}^{n_{1}} \otimes C_{2}$, there exists $w \in C_{1} \otimes C_{2}$ such that

$$
\kappa \cdot\left(\underset{i}{\mathbb{P}}\left[w_{1}(i, \cdot) \neq w(i, \cdot)\right]+\underset{j}{\mathbb{P}}\left[w_{2}(\cdot, j) \neq w(\cdot, j)\right]\right) \leqslant \underset{i \in\left[n_{1}\right], j \in\left[n_{2}\right]}{\mathbb{P}}\left[w_{1}(i, j) \neq w_{2}(i, j)\right] .
$$

Definition 3.2 (Robust testability of tensor codes). Fix $C_{i} \subseteq\{0,1\}^{n_{i}}$ linear error correcting codes, for $i=1,2$. For $f:\left[n_{1}\right] \times\left[n_{2}\right] \rightarrow\{0,1\}$, let

$$
\operatorname{dist}_{c o l}(f)=\operatorname{dist}\left(f, C_{1} \otimes\{0,1\}^{n_{2}}\right), \quad \operatorname{dist}_{\text {row }}(f)=\operatorname{dist}\left(f,\{0,1\}^{n_{1}} \otimes C_{2}\right)
$$

and

$$
d(f)=\left(\operatorname{dist}_{c o l}(f)+\operatorname{dist}_{\text {row }}(f)\right) / 2
$$

The robust testability of $C_{1} \otimes C_{2}$ is defined to be

$$
\rho=\min _{f \notin C_{1} \otimes C_{2}} \frac{d(f)}{\operatorname{dist}\left(f, C_{1} \otimes C_{2}\right)},
$$

and we say that $C_{1} \otimes C_{2}$ is ρ-robustly testable.

1. Prove that if $C_{1} \otimes C_{2}$ is κ-agreement testable, then $C_{1} \otimes C_{2}$ is ρ-robustly testable for $\rho=\frac{\kappa}{(\kappa+1)}$.
2. Bonus: Show that the converse is also true. Namely, if $C_{1} \otimes C_{2}$ is τ-robustly testable then $C_{1} \otimes C_{2}$ is κ-agreement testable, for $\kappa=\frac{2 \tau \delta_{1} \delta_{2}}{\delta_{2}+\delta_{1}(1+2 \tau)}$ (where δ_{i} is the relative distance of C_{i}).

References

[OP22] Ryan O'Donnell and Kevin Pratt. "High-Dimensional Expanders from Chevalley Groups." In: 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA. Ed. by Shachar Lovett. Vol. 234. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 18:1-18:26. DOI: 10.4230/LIPIcs.CCC.2022.18. URL: https://doi.org/10.4230/LIPIcs.CCC. 2022.18.

