
High Dimensional Expanders

Lecture 10: Boolean Analysis on High Dimensional Expanders

Instructor: Yotam Dikstein Scribe: Yotam Dikstein

This is based on joint work with Irit Dinur, Yuval Filmus and Prahladh Harsha, [Dik+18].

Our goal in this talk is to find a “Fourier decomposition” for `2(X(k)). This term is a bit vague, and not properly

defined. If we only want an orthogonal decomposition - we can decompose `2(X(k)), in numerous ways. If we want it

to respect some operation of the group, then this restricts us to simplicial complexes that have some group operating

on them. So, to better understand what kind of decomposition we can get, let’s consider the more familiar Boolean

hypercube.

1 The Boolean Hypercube

1.1 Basics

Recall that the Boolean hypercube is the graph G = (V,E) where

V = {0, 1}n

E = {{x, y} : x− y = ei (mod 2), for some 1 ≤ i ≤ n},

where ei are the vectors of the standard basis. In other words x ∼ y if the differ by one coordinate.

We saw that the characters

{χS(x) = (−1)
∑

i∈S xi : S ⊆ [n]}

are an orthonormal basis for the real valued functions on the vertices `2(V ).

On the one hand, this basis has a lot of nice properties that make it useful: they are eigenvectors of the adjacency

operator along with other natural operators (such as the noise operator, the influence operator), they behaive well

under multiplication with one another.

Many of their properties only rely on the decomposition to “Fourier-levels”. That is, if

f(x) =
∑
S⊂[n]

f̂(S)χS(x).

then we can also write

f(x) =

n∑
j=0

f=j(x)

where the jth-“Fourier level” is

f=j =
∑

S⊂[n],|S|=j

f̂(S)χS(x).

The adjacency operator of the Boolean hypercube acts separately on each level. More specifically:

AGf
=j = (1− 2j

n
)f=j .

One the other hand, the characters have combinatorial meaning. One example for this is the FKN theorem,

[FKN02]: a function whose weight is concentrated in the first level is close (in `2 or probabilisticly) to a dictatorship
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function.

Theorem 1.1 (Freidgut-Kalai-Naor). Let ε > 0, and let f : {0, 1}n → {±1} be a Boolean valued function, so that

∥∥f>1
∥∥2 = ‖f‖2 −

∥∥f=0 + f=1
∥∥2 ≤ ε.

Then there exists some dictator function g ∈ {±1,±xi}, so that

‖f − g‖2 = O(ε).

Equivalently Pr[f 6= g] = O(ε).

We see in this example that the “Fourier-levels” are what’s important, and the specific coefficients to each character

don’t matter.

There are many characterizations of functions due to their Fourier levels. Our goal in this lecture is to try and

carry this theory on to the high dimensional expander setting.

2 Boolean Analysis on Simplicial Complexes

High dimensional expanders are a much broader class of objects. We don’t have any canonical group operating on

them, or a natural symmetric structure. Still, we would like to construct a “Fourier decomposition” that has as much

of the properties above as we can. But first, let’s recall some of the things we saw previously in the course.

2.1 Quick Recap

Let X be a pure d-dimensional simplicial complex and πd : X(d) → [0, 1] a probability distribution. We define a

stochastic process {Sj}dj=0 and measures πd, πd−1, . . . , π0 as follows:

• Sd ∼ pid is choosing some d-face.

• Given the choice of Si+1 = τ , we choose Si ∈ X(i) by taking a vertex v ∈ τ uniformly at random and setting

Si = τ \ {v}.

The measures πi : X(i)→ [0, 1] are the marginals of Si.

We Also defined the up and down operators

U↗i+1 : `2(X(i))→ `2(X(i+ 1)); D↘i : `2(X(i+ 1))→ `2(X(i)),

for all −1 ≤ i ≤ d− 1, by

U↗i+1f(s) = E
t∈X(i) t⊂s

[f(t)],

D↗ig(t) = E
s∈X(i+1) s⊃t

[g(s)],

and saw that D∗ = U .

We abbreviate by

Uj↗i = U↗iU↗i−1...U↗j+1,

similarly Di↘j . It is convenient in formulas to denote the identity as Ui↗i, Di↘i (of course, this is just notation).

The composition UD and DU are the adjacency operators of the random walks (which we can think of as graphs)

on X(j):

• The composition Dj+1↘jUj↗j+1 is the upper walk: given σ ∈ X(j), we choose a face τ ∈ X(j+ 1) that contains

it, and then choose a face σ′ ∈ X(j) that is contained in τ .
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• The composition Uj−1↗jDj−1↘j is the lower walk: given σ ∈ X(j), we choose a face ρ ∈ X(j − 1) that is

contained in σ, and then choose a face σ′ ∈ X(j) that is contains in ρ.

We previously saw that

Dj+1↘jUj↗j+1 =
1

j + 2
I +

j + 1

j + 2
M+
j

where I is the identity, and M+
j is the non-lazy version of the upper random walk on the j-faces.

Our random-walk based definition to a γ-HDX was the following:

Definition 2.1 (High Dimensional Expander). Let X be a d-dimensional simplicial complex, γ < 1. We say that X

is a γ-HDX if ∥∥Uj−1↗jDj−1↘j −M+
j

∥∥ ≤ γ
for all 0 ≤ j ≤ d− 1.

In the next couple of sections we’ll see that the fact that the upper walk and lower walk are similar (up to laziness),

will allow us to connect the different `2 spaces of the faces of X(j), and decompose a function to its levels.

2.2 Decomposition to Fourier-levels

Spoiler 2.2. Our decomposition for functions f : X(k)→ R is going to be

f =

k∑
j=−1

f=j

where f=j = Uj→kh
=j for some specific h=j. This is a decomposition to “approximate eigenspaces” of the upper (and

lower walks).

For this discussion we fix some k ≤ d. We would like to decompose `2(X(k)) to its Fourier-levels. But when do we

say a function is from level m?

In the Boolean hypercube case, this is easy. m-level functions are just linear combinations of the characters

{χS : |S| = m}.
One way to try and define an m-level function in `2(X(k)) is a function

f = Um↗kh

for some function h : X(m)→ R. However, this is not a partition. An m-level function by this definition may also be

an m− 1-level function (since h itself may be h = Ug). Still, this gives us intuition that a function is of levels ≤ m if

it is in the image of Um↗k.

We fix the problem in the following sense.

Proposition 2.3 (Decomposition to Fourier levels). Let X be a d-dimensional simplicial complex, and let k ≤ d. Let

f : X(k)→ R be some function. Then there exists a decomposition

f =

k∑
j=−1

f=j

where:

1. f=−1 = U−1↗kh
−1 is some constant function.

2. D↘d−1f
=d = 0.
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3. For all 0 ≤ j < k there exists some h=j ∈ X(j) so that f=j = Uj↗kh
=j. Furthermore D↗j−1h

=j = 0.

Notice that the sum of the j-lower levels is precisely the part that comes from the image of Uj↗k, so we can really

understand this as a function from a lower level.

Proof. Recall that for any linear transformation S, Ker(S) = Im(S∗)⊥. In particular Ker(D↘k−1) = Im(U)⊥. Thus

`2(X(k)) = Ker(D) + Im(U),

and for any f : X(k) → R, we can write f = f=d + Uh, where h ∈ X(`2(X(k − 1)) and f=d ∈ Ker(D). Now we

proceed by induction on h.

Notice that this proposition is weak in the sense that we don’t even know if the functions h=j are unique.

Claim 2.4. The h=−1, ..., h=k in decomposition above are unique for all functions, if and only if the operators U are

injective.

Proof. Exercise.

When the operators U are unique, we say that the simplicial complex is proper.

Exercise 2.5. 1. Any (d+ 1)-partite simplicial complex, is not proper.

2. A graph (1-dimensional simplicial complex) is not proper, if and only if it has a bipartite connected component.

3. Find an example for a d-dimensional simplicial complex that is not proper, and not (d+ 1)-partite.

Claim 2.6. Let X be a d-dimensional simplicial complex, and suppose that X is a γ-HDX for γ < 1
d+1 . Then X is

proper.

Proof. Let f ∈ X(j) be some non-zero function for some j < d. Then

〈Uf,Uf〉 = 〈DUf, f〉 =
1

j + 2
〈f, f〉+

j + 1

j + 2

〈
M+f, f

〉
=

1

j + 2
〈f, f〉+

j + 1

j + 2

(〈
(M+ − UD)f, f

〉
+ 〈UDf, f〉

)
≥

1

j + 2
〈f, f〉+

j + 1

j + 2
〈Df,Df〉 − j + 1

j + 2
γ 〈f, f〉 .

Since 〈Df,Df〉 ≥ 0. and 1
j+2 ≥

1
d+1 and γ < 1

d+1 the required is positive.

3 Orthogonality of Decomposition

In the next sections we’ll show that the decomposition we gave above is “close” in some sense, to an orthogonal

decomposition. We begin with the case of the complete complex.

3.1 The Complete Complex

Claim 3.1. Let X be the d-dimensional completed complex on n vertices. Then

i+ 2

i+ 1
Di+1↘iUi↗i+1 −

n− i
n− i− 1

Ui−1↗iDi↘i−1 =

(
1

i+ 1
− 1

n− i− 1

)
I
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Proof. Note that In the complete complex case, the upper non-lazy operator and the lower non-lazy operator are the

same:

(M+
i )(σ′,σ) = (M+

i )(σ′,σ) = Pr[σ′|σ] =

 1
n−i−1 |σ ∩ σ′| = i

0 otherwise
.

Moreover, as the probability to stay in place in the complete complex also doesn’t depend on the vertex, we also have

that:

Ui−1↗iDi↘i−1 =
n− i− 1

n− i
M+
i +

1

n− i
I.

We recall that in any simplicial complex

Dj+1↘jUj↗j+1 =
1

j + 2
I +

j + 1

j + 2
M+
j ,

and the rest is direct calculation.

Claim 3.2. Let X be the complete complex. Let f = Um↗kh be so that Dm↘m−1h = 0. Then

DUf = λkmf

UDf = λk−1m f

where

λkm = (1− m+ 1

k + 2
) + on(1).

This claim immediately gives us orthogonality:

Corollary 3.3 (Orthogonality of Decomposition). Let X be the d-dimensional complete complex, and f : X(k)→ R
be some function. Let f =

∑k
j=−1 f

=j be its Fourier-level decomposition. Then for any i 6= j, f=i ⊥ f=j.

This also gives us some insight regarding the non-expanding sets in the complete complex.

Corollary 3.4. Let f : X(k)→ R an indicator of some set A. Suppose that
∥∥f≤j∥∥2 < ε ‖f‖2. Then

‖DUf‖2 ≤ ((
j + 1

k + 2
)2 + ε) ‖f‖2 .

The idea of the proof is inductive. The base case is will be direct, and then we can recursively calculate DUUm↗kh,

by substituting DU with αUD + (1− α)I (for appropriate α, given by Claim 3.1). Then we get

(1− α)Um↗kh+ αUDUm↗kh,

and then again we substitue DU with α′UD + (1− α′)I:

(1− α)Um↗kh+ αU ((1− α′)UDUm↗k−1h+ α′UDUm↗k−1h)

and so on. When we get to U...UDh, we get that Dh = 0. Thus we remain with λUm↗kh for an appropriate constant

λ.

Proof. The proof goes by induction on k. For k = 0 note that if f = Uh then f is constant, thus UDf = DUf =

1f .Otherwise, f ∈ KerD, and then UDf = 0, and DUf = ( 1
2 −

1
2(n−1) )f since this is the lazy version of the complete

graph’s adjacency operator.

Now assume this is true for k − 1, and consider f = Um↗kh.
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• Consider first the operator UD: If f ∈ KerD the calculation is clear. Otherwise, to calculate UDUm↗kh, we use

associativity and do U(DU)Um−1↗k−1. From the induction hypothesis, we get that this is U(λk−1m−1Um−1↗k−1

and the equality follows.

• Now for DU : By Claim 3.1:

UD(Um↗kh) = U

[(
1

k + 2
− k + 1

(k + 2)(n− k − 1)

)
I +

(n− k)(k + 1)

(n− k − 1)(k + 2)
UD

]
Um↗kh =

1

k + 2
Um↗kh+

k + 1

k + 2
UD(Um↗kh) +

1

n− k − 1

(
−k + 1

k + 2
I +

k + 1

k + 2
UD(Um↗kh

)
From what we saw above, UD(Um↗kh) = λk−1m−1Um↗kh is an eigenvector, and so we get:

=

(
1

k + 2
+
k + 1

k + 2
(1− m− 1

k + 1
) + on(1)

)
Um↗kh = λkmUm↗kh.

3.2 High Dimensional Expanders

Reflecting on the previous proof, what we actually needed, is the fact we could write

DU = αUD + βI.

In high dimensional expanders, we only have an approximate equality, that is:∥∥∥∥DU − j + 1

j + 2
UD − 1

j + 2
I

∥∥∥∥ ≤ γ.
This is true because

DU =
j + 1

j + 2
M+ +

1

j + 2
I

and ∥∥M+ − UD
∥∥ ≤ γ.

In the approximate case, the upper and lower operators do not commute in general, thus we can’t expect both

operators to have the same eigenspaces. However, we can say that the f=j ’s are approximate eigenvectors. That is,

∥∥DUf=j − λkj f=j∥∥ = Od(γ)
∥∥f=j∥∥ .

In particular, we’ll get that this decomposition is approximately orthogonal. When j1 6= j2,

〈
f=j1 , f=j2

〉
= Od(γ)

∥∥f=j1∥∥∥∥f=j2∥∥ .
Theorem 3.5 (Approximate Eigenvector Decomposition). Let f = Um↗kh for some h ∈ kerDk↘k−1. Then

∥∥DUf − λkmf∥∥ ≤ (k −m)O(γ).

∥∥UDf − λk−1m−1f
∥∥ ≤ (k −m)Od(γ) ‖f‖ .

We abuse the notation and write g1 = g2 +O(γg3).

For example, in that graph case, when we look at functions on the vertices, we can separate them to their constant
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part where UDf=−1 = 1f=−1, and to the part that is orthogonal to the constant part where∥∥∥∥UDf=0 − 1

2
f=0

∥∥∥∥ = O(γ)
∥∥f=0

∥∥ .
Again,

Proof. We begin proving something easier:

Claim 3.6. ∥∥DUf − λkmf∥∥ ≤ (k −m)O(γ) ‖h‖ .∥∥UDf − λk−1m−1f
∥∥ ≤ (k −m)Od(γ) ‖h‖ .

Notice that in this claim, we compare ourselves to the norm of h. Since U is a contracting operator, we are allowing

ourselves more error.

Afterwards we’ll show that the norm of h and the norm of f are proportionate up to a constant factor that depends

only on the dimension of the simplicial complex:

Claim 3.7 (Equivalent Norms). There exists a global constant ρk, that depends only on k (but not on any other

parameters of the simplicial complex), s.t.

‖Uk↗mh‖ ≥ ρd(1±O(γ)) ‖h‖ .

Proof of Claim 3.6. This proof for Claim 3.6 follows the same steps of the proof for the complete complex. We use

induction on k where the case for k = 0 is clear.

Assume for k − 1, and consider f = Um↗kh.

UDf = U [(DU)Um↗k−1h] = U [λk−1m−1Um−1↗k−1h+ (m− k − 1)O(γh)] = λk−1m−1Um↗kh+ (m− k − 1)O(γh).

The last equality is due to the fact that U is contracting (that is ‖Ug‖ ≤ ‖g‖).
Calculating for DU :

DUUm↗kh =
1

k + 2
Um↗kh+

k + 1

k + 2
UDUm↗kh+O(γUm↗kh)

As before, we use the induction hypothesis on k − 1 and get:

=
1

k + 2
Um↗k +

k + 1

k + 2
U(λk−1m Um↗k−1h+ (m− k − 1)O(γh)) +O(γh)

= λkmUm↗kh+ (m− k)O(γh).

Proof Sketch of Claim 3.7. the proof here is also by induction.

〈f, f〉 = 〈Um↗kh, Um↗kh〉 = 〈DUUm↗k−1h, Um↗k−1h〉 = λk−1m 〈Um↗k−1h, Um↗k−1h〉+ 〈O(kγh), h〉

By the induction hypothesis we can write

= λk−1m ρk−1 〈h, h〉+ 〈O(kγh), h〉
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and by Cauchy-Schwartz we get (in both directions)

= (λk−1m ρk−1) 〈h, h〉+Ok(γ) 〈h, h〉

and the claim follows.

Combining the two claims, and the theorem follows.

Remark 3.8. 1. We won’t get in to it today, but this decomposition also has combinatorial meaning. For example,

there is an FKN theorem for high dimensional expanders, that shows that the Fourier levels measure closeness

to a degree one function.

2. Another thing we won’t see today, is that one can use this to extend the expander mixing lemma to higher

dimension.

3. Finally, notice that what we really needed is the stochastic process structure for this proof, i.e. the random variable

S = (Sd, ..., S0). One can actually extend this theory to other structures with such a process. An example for

this is the Grassmann POSet X = Grq(n, d) where

∀i = −1, 0, 1, ..., d X(i) = {W ⊂ Fnq : dimW = i+ 1}

and our process is to choose Sd uniformly at random, and then choose a flag of subspaces inside it.
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