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In this lecture we will study higher order random walks. Given a d-dimensional
simplicial complex, one can walk on its i-dimensional faces. We will define what expan-
sion means in this context and relate this definition to the previous definition through
links. We will then derive the breakthrough result of [1] showing that the basis-exchange
random walk on matroid bases mixes rapidly.

1 Walking in i dimensions
In graphs, the simple random walk walks from vertex to edge to the opposite vertex.
The graph is connected if this walk can reach every vertex from every start vertex.

In higher dimensions, we can “walk” on i-dimensional faces. There are several natural
walks. In two dimensions, a walk on the edges can go edge-vertex-edge, or edge-triangle-
edge. The connectivity of the first walk is the same as the connectivity of the underlying
graph (why?). The second walk can be disconnected.

– Upper random walk: start from an i-face, walk up to an i+ 1 face and then down
to an i face.

– Lower random walk: start from an i-face, walk down to an i− 1 face and then up
to an i face.

To analyze these walks, let us consider their transition matrices. These are naturally
described in terms of the Up and Down operators, which we define next.

Let the space of i-chains on X be

Ci(X) = {f : X(i)→ R}.

The Down operator takes an i-chain to an (i − 1)-chain, by averaging over the faces
immediately above it:

∀s ∈ X(i− 1), Dif(s) = E
t>s

f(t),

where we use the notation t > s to denote that t ⊃ s and dim(t) = dim(s) + 1.
The Up operator takes an i-chain to an (i+ 1)-chain.

∀t ∈ X(i+ 1), Uif(t) = E
s<t

f(s).

The upper walk operator is Di+1Ui : Ci(X)→ Ci(X). It averages the values of an i
chain at a face s over all faces s′ obtained by first going up to an i + 1 face t and then
down to an i face s′.

The lower walk operator is Ui−1Di. The corresponding lower random walk goes from
i-face to i− 1-face to another i-face.
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1.1 Up and Down operators viewed as a bipartite graph
We can think of the bipartite graph B whose left side is X(i) and right side is X(i+ 1),
and there is an edge between s ∈ X(i) and t ∈ X(i+ 1) iff s ⊂ t. The transition matrix
of B is a block matrix with two zero components and one U and one D component.

B =


D 0

0 U

 .
This operator is self-adjoint with respect to the “natural” distribution1. This is precisely
because U,D are duals of each other with respect to the appropriate inner product which
we defined as

∀f, f ′ ∈ Ci(X), 〈f, f ′〉 = E
s∼X(i)

[f(s)f ′(s)].

Claim 1.1. The up and down operators are duals in the sense that for every f ∈ Ci(X)
and g ∈ Ci+1(X),

〈Di+1g, f〉 = 〈g, Uif〉.

Proof. We drop subscripts and maintain that s ∈ X(i) and t ∈ X(i+ 1),

〈Dg, f〉 = E
s
[f(s)Dg(s)] = E

s
[f(s) E

t>s
g(t)]

= E
s<t

[f(s)g(t)] =

= E
t
g(t) E

s<t
[f(s)] = 〈g, Uf〉.

�

So far we have considered the second largest eigenvalue λ2 of random walk operators.
For such an operator A it is well known, and can be easily verified, that

λ2(A) = sup
f⊥1,‖f‖=1

‖Af‖ = sup
f⊥1,‖f‖=1,‖g‖=1

〈Af, g〉.

We now need to define a similar notion for an operator that moves from one space to
another. Let us define the spectral norm of an operator T : `2(W1)→ `2(W2) by

λ(T ) = sup
‖f‖=1,f⊥1

‖Tf‖ = sup
f⊥1,g

〈Tf, g〉

This is the standard operator norm of T when restricted to the space of functions f ⊥ 1.

Lemma 1.2. Let U : Ci−1(X)→ Ci(X) and let D : Ci(X)→ Ci−1(X) be as before.

1. λ(D) = λ(U)

2. λ(D)2 = λ2(UD) where λ2 is the second largest eigenvalue of the self-adjoint op-
erator UD.

3. λ2(B) = λ(D) = λ(U) where B is the transition matrix of the bipartite graph B.
1The distribution on the nodes of the graph that is derived by selecting a random edge in the graph

and then a random endpoint. This implies that half of the weight is on the right hand side vertices, and
half is on the left.
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We claim that λ(D) = λ(U). Indeed, if f ⊥ 1 then Df ⊥ 1, so

λ(D) = sup
f⊥1,g

〈Df, g〉 = sup
f⊥1,g⊥1

〈Df, g〉 = sup
f⊥1,g⊥1

〈f, Ug〉 = sup
f,g⊥1

〈f, Ug〉 = λ(U).

We further claim that the second largest eigenvalue of UD is equal to λ(D)2. Indeed,
let f ∈ Ci(X) be the eigenfunction corresponding to λ2, with ‖f‖ = 1.

λ2 = λ2〈f, f〉 = 〈UDf, f〉 = 〈Df,Df〉 = ‖Df‖2 6 λ(D)2.

Let now f ⊥ 1 be a function attaining the supremum in the definition of λ(D). Then

λ(D)2 = ‖Df‖2 = 〈Df,Df〉 = 〈UDf, f〉 6 λ2.

1.2 Connectivity of X(i)
Let us say that X is i-connected if the upper walk on X(i) is connected.

The lower walk on X(i) is connected iff the upper walk on X(i − 1) is connected.
However, even when the lower walk on X(i) is connected, the upper walk on X(i) could
be disconnected.

If, in addition, we know that the links of vertices are all (i− 1)-connected, then the
upper walk in dimension i will be connected.

Lemma 1.3 (Connectivity from local to global). If X is (i − 1)-connected, and the link
of every vertex v ∈ X(0) is (i− 1)-connected, then X is i-connected.

Proof. The proof of this lemma relies on the fact that we can “extend” a path in the lower
walk to a path in the upper walk. Suppose e = e1, . . . , en = e′ is a path in the lower walk,
namely every consecutive pair of edges have a common vertex. We can construct a new
path e = f1, . . . , fm = e′ in the upper walk, namely where every consecutive pair of edges
are in a triangle. We do so by replacing the step ei, ei+1 by a path ei, ei,1, . . . , ei,t = ei+1
in the upper walk as follows. Suppose ei = {v, u} and ei+1 = {v, u′}. Look at the path
u = u1, . . . , ut = u′ in the link of the vertex v. This path gives a sequence of edges
ei,j = {v, uj} where every consecutive pair of edges is contained in a triangle, namely
{v, uj , uj+1}. The same can be shown in higher dimensions. �

1.3 Random-walk expansion
When would we say that a simplicial complex is an expander from the point of view of
random walks? For expander graphs, we used

‖A− J‖2 6 λ (two-sided)

or
A− J 4 λ · Id (one-sided)

where A is the transition matrix of the random walk on the vertices of the graph, and J
is 1

n times the all ones matrix. Observe that U−1D0 = J . We can rewrite the above as

‖A− U−1D0‖2 6 λ.

or
A− U−1D0 4 λ · Id.
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Interestingly, we can express A itself in terms of the up and down operators:

A = 2D1U0 − Id.

Indeed when we walk up from a vertex to an edge and then back down to a vertex we
stay in place with probability 1/2 and move to a neighbor with probability 1/2. The
same is true for walk in higher dimensions. We call a walk non-lazy if the probability
to stay in place is zero. The up-down walk on i faces has 1

i+2 laziness probability. We
denote M+

i the non-lazy upper walk. Note that

DU = i+ 1
i+ 2M

+
i + 1

i+ 2Id.

This suggests the following definition,

Definition 1.4. A complex is a λ-random-walk expander if for every i < d,

‖M+
i − Ui−1Di‖2 6 λ, (two-sided)

or
M+

i − Ui−1Di 4 λ · Id, (one-sided)

where
M+

i = i+ 2
i+ 1Di+1Ui −

1
i+ 1Id

is the non-lazy upper random walk.

This definition seems complicated and technical, so let us say a few words about it.
Expanders are viewed as graphs that are on one hand sparse and on the other hand,

at least from random-walk point of view, imitate the complete graph. So they are sparse
objects that are pseudo-dense. A generalization to higher dimensions is to find simplicial
complexes that are sparse, yet imitate the complete complex, and are pseudo-dense.

How would we measure if a given s.c. imitates the complete complex? If we fix the
same number of vertices n, there are very different numbers of edges and triangles and
so on. So the random-walk operators work in spaces whose dimensions are different, and
it is unclear how to compare them.

Instead, we use a comparison between upper walks and lower walks of a complex to
itself. The complete complex demonstrates identical behavior between upper and lower,
so we let this be the model for our definition.

Is this definition any good? The following two theorems give some nice justification
for it. We will first prove, in Theorem 2.1, that this definition is very much related to the
link-expansion definition we gave in lecture 1. We will then analyze the second largest
eigenvalue of i-walks in the complete complex and show that complexes satisfying this
definition have nearly the same eigenvalues.

2 Link expansion and Random-walk expansion
Theorem 2.1 (link-expansion and random walk expansion). Every one-sided (two-sided)
γ-link HDX is a one-sided (two-sided) γ-random-walk HDX.

Moreover, if X is a two-sided γ-random-walk HDX, then it is a 3dγ-two-sided link
HDX.
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Proof. We prove the first implication. Assume that X is a γ-link expander, one-sided.
Let f ∈ Ci(X), i < d. We have

〈M+
i f, f〉 = E

s∈X(i)
E

t>s
E

s′<t,s′,s
[f(s)f(s′)] = E

t∈X(i+1)
E

s,s′<t,s,s′
[f(s)f(s′)].

Let r = t \ {x, y}. Since t ∼ X(i+ 1) and x , y ∈ t are chosen at random, we have
r ∼ X(i− 1). Given such an r, the probability to get specific (t, x, y) is exactly like
choosing a random edge in Xr so

〈M+
i f, f〉 = E

r∼X(i−1)
E

(x,y)∈Xr(1)
[f(r ∪ {x})f(s ∪ {y})]. (2.1)

In other words, we have shown that

〈M+
i f, f〉 = E

r∼X(i−1)
[〈Arfr, fr〉], (2.2)

where fr : Xr(0)→ R is defined by

fr(x) = f(r ∪ {x}).

We now note that
E

x∼wr

[f(r ∪ {x})] = (Df)(r).

Therefore we have, by the γ-expansion in the links that

|〈M+
i f, f〉 − 〈UDf, f〉| =

∣∣ E
r∼X(i−1)

E
(x,y)∼wr

[f(r ∪ {x})f(r ∪ {y})]− (Df)(r)2∣∣ 6
E

r∼X(i−1)

[
λ(Ar) E

x∼wr

[f(r ∪ {x})2]
]
.

If X is a γ-two-sided link expander then λ(Ar) 6 γ for all s, and so

|〈(M+
i − UD)f, f〉| 6 γ‖f‖2.

�

3 Bibliographic notes
Higher order random walks were first studied in [4] where the authors defined a combi-
natorial “random-walk” type of expansion, and showed that it is implied by expansion
of the links, thus proving that in high dimensional link-expanders, higher order random
walks are rapidly mixing. This was refined in [3, 5], who gave stronger convergence
bounds, showing that random walks on a high-dimensional expander converge at “opti-
mal” rates, namely at nearly the same speed as random walks on the complete complex.
(In [3] the focus is on two-sided link expansion and in [5] the one-sided link expansion is
analyzed). The work [2] showed a reverse connection in the case of two-sided expansion,
where random walk expansion also implies link expansion (with a loss in parameters) and
therefore they are qualitatively equivalent. The random walk definition of high dimen-
sional expansion is also generalized beyond simplicial complexes also to ranked posets
(partially ordered sets).
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