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In this lecture we will continue to study coboundary and cosystolic expansion and its
relation to property testing. We prove coboundary expansion of the complete complex,
and then we will prove the linearity testing theorem of Blum Luby and Rubinfeld, and
describe it as coboundary expansion of a certain chain complex.

1 Cosystolic expansion
Recall that given a d-dimensional simplicial complex, we define the chain of coboundary
maps to be

C−1
δ−1→ C0

δ0→ C1
δ1→ · · · δi−1→ Ci

δi→ Ci+1 → · · ·

where Ci = Ci(X,Z2) = ZX(i)
2 is the space of all i-chains, and where δi : Ci → Ci+1 is

given by
∀f ∈ Ci, ∀s ∈ X(i + 1), δif(s) =

∑
t<s

f(t) mod 2

We set the coboundaries to be Bi = Im(δi−1) and the cocycles to be Zi = Ker(δi) and
noted that Bi ⊆ Zi ⊆ Ci and furthermore we let the i-th cohomology be Hi = Zi/Bi.
When Bi = Zi this is trivial. We defined coboundary expansion to be

hi(X,Z2) = min
f∈Ci\Bi

wt(δif)
dist(f, Bi) .

In this definition we are comparing two measures for the distance of a given chain f to
Bi. The numerator is a distance that is easy to calculate and even to estimate: simply
check for each i + 1-face s, whether δif(s) = 0. The denominator involves the distance
of f from a given set, and may require exponential time to compute (indeed, in some
cases this is NP-hard). Having a constant coboundary expansion means that these two
measures are comparable, and that we can estimate the denominator by the numerator.
Indeed, a convenient equivalent way to think about coboundary expansion is this

∀f ∈ Ci, dist(f, Bi) ⩽ wt(δif) · 1
hi

.

How large or small can hi be? It can be zero when ZiBi: take any f ∈ Zi \ Bi, it has
wt(δif) = 0. Even if hi , 0 it can be as small as O(1)/|X(i)|. For example, check this
on i = 0 and, say, the cycle graph.

The same definition that pertains to coboundaries, can be made regarding cocycles.
Definition 1.1. The cosystolic expansion of a d-dimensional simplicial complex X, at
level i < d, is defined to be

hi(X,Z2) = min
f∈Ci\Zi

wt(δif)
dist(f, Zi) .
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We are using the same notation hi for coboundary and cosystolic expansion simply
because in case Bi = Zi these are the same, and in case Bi ⊊ Zi, then the coboundary
expansion is zero and the quantity of interest will be cosystolic expansion.

We say that a family (Xn)∞
n=1 of simplicial complexes is a family of ε-cosystolic

expanders if for all n, hi(Xn) > ε. Are there any coboundary expanders (sparse or not)?
We will see that there are families of bounded-degree cosystolic expanders.

2 Coboundary expansion of the complete complex
A first question to ask is whether the complete complex is a coboundary expander.

The definitions of link expansion and random walk expansion were developed by
comparison to the complete complex, and the fact that the complete complex is an
expander according to these definitions is immediately obvious.

In contrast, the definition of coboundary/cosystolic expansion is derived by phras-
ing the 0-dimensional case in cohomological terms, and then generalizing syntactically.
It turns out that even the expansion of the most naturally expanding complex is not
obviously clear.

Theorem 2.1 ([3, 4, 5]). Let X = ∆n−1 be the complete complex on n vertices. Then
hk(X) ⩾ n

n−k−1 .

Before proving the theorem, let us consider the case k = 1. We need to show that
for any f ∈ C1,

dist(f, B0) ⩽ wt(δ1f) · n − 2
n

.

In other words, assuming that δf is small, we must find some chain g ∈ C0 such that
f ≈ δ0g.

Connection to graph property testing. The 0-chains g ∈ C0 are arbitrary 0 − 1
functions on the vertices, namely every g corresponds to a subset S of the vertices. The
coboundaries δg ∈ B0 are indicators of the edges crossing the cut between S and S̄.
So, for k = 1, the question of coboundary expansion boils down to a property testing
question called biclique testing. This is the question of testing if a given graph is a
biclique (i.e. the vertices can be partitioned so that the graph is a complete bipartite
graph between the two parts). Given an arbitrary graph f ∈ C1, test whether it is close
to a biclique, i.e. to a graph that indicates a cut between S and S̄. Indeed, in the
literature of property testing [2] this is a well known result, stating that the triangle
test is a good so-called proximity-oblivious tester (POT) for the property of being a
biclique. This result appears in [2, Proposition 8.6].

To warm up to the proof, assume first that ε = 0. In this case we can “reconstruct”
the cut S, S̄ from f by fixing some v, putting v in S̄, and then deciding for every other
vertex u whether it is in S according to f(uv). Namely, we set S = {u ∈ V | f(uv) = 1}.
We can now check that for every edge uw,

f(uw) = f(uv) + f(vw) = 1S(u) + 1S(w) = δ1S(uw).

To prove the theorem we do the same thing, but robustly.
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Proof. We first analyze the case k = 1. Fix v ∈ X(0). Let g ∈ C0 be defined by g(v) = 0
and g(u) = f(uv) for all u , v. By definition, for every edge e ∋ v, δg(e) = f(e). For
edges uw where v , u, w,

δg(uw) = g(u) + g(w) = f(uv) + f(vw) = f(uw) + δf(uvw).

Since δf(uvw) has weight ε in total, there must be some vertex v such that the weight
on triangles touching v is also no more than ε. Choosing this as out initial v we get

P
e
[f(e) , δg(e)] = P

e
[f(e) , δg(e) | e ∋ v] · P[e ∋ v] + P

e
[f(e) , δg(e) | e = v] · P[e = v]

⩽ 0 · 2
n

+ ε · n − 2
n

= ε · n − 2
n

.

For general k the proof is nearly the same. Let f ∈ Ck and let ε = wt(δf). We will
find g ∈ Ck−1 such that δg ≈ f .

Choose some v ∈ V , and define g ∈ Ck−1 by setting

∀t ∈ X(i − 1), g(t) =
{

0, t ∋ v

f(t ∪ {v}), t = v
.

Fix first some s ∈ X(i) that contains v. We have by definition

δg(s) =
∑
t<s

g(t) = g(s \ {v}) = f(s \ {v} ∪ {v}) = f(s).

Now assume s = v.

δg(s) =
∑
t<s

g(t) =
∑
t<s

f(t ∪ {v}) = δf(s ∪ {v}) + f(s)

where the last equality is by definition of δf(r) at r = s ∪ {v}. We see that δg(s) = f(s)
whenever δf(s ∪ {v}) = 0. So let us choose the vertex v such that δf is non zero on the
smallest number of sets r ∋ v. By averaging this is at most ε. Like before we get

P
r∈X(k)

[f(r) , δg(r)] = P
r
[f(r) , δg(r) | r ∋ v] · P[r ∋ v] + P

r
[f(r) , δg(r) | r = v] · P[r = v]

⩽ 0 · k + 1
n

+ ε · n − k − 1
n

= ε · n − k − 1
n

.

□

3 Linearity Testing
Given a function f : Zn

2 → Z2, how can we test if it is a linear function? By linear we
mean a function of the form f(x) =

∑n
i=1 aixi mod 2 for some coefficients (a1, . . . , an).

The linear functions are the functions

L =
{

fa : Zn
2 → Z2

∣∣∣∣∣ fa(x) =
n∑

i=1
aixi mod 2

}
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and the question is about membership of f in L. A possible test for linearity is this:
choose a random pair of points x, y ∈ V and accept it

f(x) + f(y) = f(x + y).

Clearly if f is linear, the test will pass with probability 1. Blum Luby and Rubinfeld
proved [1] that it is a “good test” in the following sense,

Theorem 3.1 (BLR Linearity Testing). Let f : Zn
2 → Z2. Then

Probx,y∈Zn
2
[f(x) + f(y) , f(x + y)] ⩾ min(2

9 , dist(f, L)).

In particular this means that the only functions satisfying all of these tests (for all
x, y ∈ Zn

2 ) are the linear functions.
We will prove this theorem shortly, but first we would like to rephrase it in cohomo-

logical terms. We introduce the following chain of linear maps

V = Zn
2

δ0−→ ZV
2

δ1−→ ZV ×V
2 (3.1)

where δ0 maps a sequence of coefficients a ∈ V to a linear function δ0a = fa; and where
δ1 maps a function f ∈ ZV

2 = ZZ
n
2

2 to δ1f ∈ ZV ×V
2 defined by

∀x, y ∈ Zn
2 , δ1(f)(x, y) = f(x) + f(y) + f(x + y).

This presentation follows a very nice lecture by Uli Wagner, [6]. The following claim is
pretty obvious,

Claim 3.2. Every f ∈ L satisfies, for all x, y, f(x) + f(y) = f(x + y). Namely, δ1 ◦ δ0 = 0

Proof. The first part is clear, to see that it implies the second part, observe that L =
Im(δ0), and that Kerδ1 is the set of functions that satisfy f(x) + f(y) = f(x + y) for all
x, y. □

The above claim implies that we are looking at a chain complex with two maps, also
known as a 2-chain. In general,

Definition 3.3. A chain complex is a sequence of linear maps

V0
d0−→ V1

d1−→ V2
d2−→ · · ·

such that for all i ⩾ 0, di+1 ◦ di = 0.

We define the cosystolic expansion of a chain complex at level i in the natural way,

Definition 3.4 (Expansion of a chain complex). Given a chain complex

V0
d0−→ V1

d1−→ V2
d2−→ · · ·

we define
hi = min

f∈Vi\Ker(di)

wt(dif)
dist(f, Ker(di))

.

Returning to our chain (3.1). It is easy to see that Ker(δ1) = L = Im(δ0). Moreover,
Theorem 3.1 implies that

h1 ⩾ 2/9.
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Proof. Let us now prove the theorem in three steps. Fix f : Zn
2 → Z2, and denote

ε = wt(δ1f) = Probx,y∈Zn
2
[f(x) + f(y) , f(x + y)]. Assume that ε < 2/9, otherwise

we are done. The proof will find a function g ∈ L and show it is close to f . We define
g : Zn

2 → Z2 by
∀x ∈ Zn

2 , g(x) =y∈Zn
2

f(y) + f(x + y).

Every y “votes” for the value of g(x), and the final value is decided by majority. The
proof proceeds in three steps, captured by the following three claims.

Claim 3.5. dist(f, g) = Px[g(x) , f(x)] ⩽ ε.

In the next step we will see that the value g(x) is obtained by a relatively vast
majority

Claim 3.6. For all x, Py[g(x)] , f(x + y) + f(y)] < 1/3.

Finally, we will prove that g is linear,

Claim 3.7. g is linear, namely g ∈ L.

Proof. Proof of Claim 3.5 Write

P
x,y

[g(x) = f(x + y) + f(y)] = E
x
E
y

[1g(x)=f(x+y)+f(y)] ⩾ E
x
E
y

[1f(x)=f(x+y)+f(y)] = ε,

where the inequality holds by choice of g(x). □

Proof. Proof of Claim 3.6 Let px = Py[f(y) + f(x + y) = g(x). We know that px ⩾ 1/2,
and need to show that px > 2/3. If we choose y1, y2 independently, then the probability
that they vote in the same way is p2

x + (1 − px)2. We lower bound this by

p2
x + (1 − px)2 = P

y1,y2
[f(y1) + f(x + y1) = f(y2) + f(x + y2)]

= P
y1,y2

[f(y1) + f(x + y2) = f(y2) + f(x + y1)] ⩾ 1 − 2ε ⩾ 5/9.

Here the inequality is because y1 and x + y2 are distibuted as two independent points
so with probability at least 1 − ε, f(y1) + f(x + y2) = f(x + y1 + y2). Similarly with
probability at least 1 − ε, f(y2) + f(x + y1) = f(x + y1 + y2). By union bound, the
probability that both events hold is at least 1−2ε. We deduce that p2

x +(1−px)2 > 5/9,
which implies px > 2/3. □

Proof. Proof of Claim 3.7 Fix some arbitrary x, y, and choose z uniformly at random.
Now, by Claim 3.6,

P
z

[g(x) , f(z) + f(x + z)] < 1/3

P
z

[g(y) , f(y + z) + f(z)] < 1/3

P
z

[g(x + y) , f(x + z) + f(y + z)] < 1/3

There is at least one z for which all three equalities hold. Summing over the three
equations, the right hand side becomes 0 because everything cancels, so we are left with
g(x) + g(y) = g(x + y) □

Together, the three claims imply the theorem □
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We end this lecture with an interesting observation. The proof of Claim 3.7 really
shows one more step in our chain complex: δ2 : ZV ×V

2 → ZV ×V ×V
2 , defined by

∀F ∈ ZV ×V
2 , ∀x, y, z ∈ Zn

2 , δ2F (x, y, z) = F (z, x+z)+F (y +z, z)+F (x+z, y +z).

Observe that for every f : Zn
2 → Z2, if we choose F = δ1f , then δ2F = 0 (this was used

in the proof above). This means that δ2 ◦ δ1 = 0 so indeed the entire sequence of maps

V = Zn
2

δ0−→ ZV
2

δ1−→ ZV ×V
2

δ2−→ ZV ×V ×V
2

is a chain complex. We used the extra step in the chain to prove expansion of 1-chains.
This phenomenon will repeat itself when we prove cosystolic expansion of high dimen-
sional expanders.
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