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Course by Irit Dinur, Talk by Yotam Dikstein

December 22, 2022

Our goal is to describe a simple construction of bounded degree high dimensional expanders due to
Kaufman and Oppenheim [KO18]. Our notes are based on the presentation of the construction given in
[HS19].

1 Groups, subgroups and cosets

Before describing the construction, we give a quick overview of groups.

Definition (Group). A group is a pair (G, ·) where G is a non-empty set and · : G×G → G has the
properties:

1. For all a, b, c ∈ G, (a · b) · c = a · (b · c). This is called associativity.

2. There exists and identity element e ∈ G so that for all a ∈ G it holds that a · e = e · a = a.

3. For every a ∈ G there exists (a unique) a−1 ∈ G so that aa−1 = a−1a = e.

We sometimes just write ab instead of a · b, and G instead of (G, ·).

Examples:

1. The (R, ·) where · is the usual multiplication.

2. (Zn = {0, 1, ...,n− 1},+) where the operation is addition mod n.

3. Any vector space (V ,+) where the operation is just addition of vectors.

4. (Sn, ◦) where Sn = {σ : [n] → [n] | σ is invertible} and ◦ is composition of functions.

5. (GLn(Fq), ·) where GLn(Fq) is the set of invertible matrices of dimension n× n, and · is matrix
multiplication. We can

Remark 1.1. Notice that in the first three examples, the operation is commutative. that is ab = ba for every
a, b ∈ G. This doesn’t hold in general for the last two examples. Groups with this property are called abelian
groups.
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1.1 Subgroups

Definition (Subgroup). Let (G, ·) be a group. A subgroup is a non-empty set H ⊆ G so that (H, ·) is a
group. Equivalently, e ∈ H and for every a, b ∈ H a · b, a−1 ∈ H. When H is a subgroups we write H ⩽ G
instead of H ⊆ G.

Obviously {e},G ⩽ G. Other, non-trivial examples include:

1. Q ⊆ R or Z ⊆ R.

2. {0, 2, 4, 6} ⊆ Z8.

3. Any subspace W ⊆ V (these aren’t the only subgroups of a vector space, e.g. Z2 ⊆ R2).

4. {σ ∈ Sn | σ(n) = n} ⩽ Sn.

5. SLn(Fq) ⩽ GLn(Fq) where SLn(Fq) = {A ∈ GLn(Fq) | det(A) = 1}.

Another way to construct a subgroup, is to say which elements “must” be in it. For a set S ⊆ G let ⟨S⟩ ⩽ G
be

⟨S⟩ =
{
g1g2...gm

∣∣ m ∈ N, g1, ..., gm ∈ S ∪ S−1}
.

Another way to describe ⟨S⟩ =
⋂

S⊆H⩽G H (it is an easy exercise showing this is well defined and that both
definitions are equivalent).

1.2 Cosets

Let H ⊆ G and g ∈ G. The set gH = {gh | h ∈ H} is a coset (if and only if g ∈ g′H). Note that gH = g′H

if and only if g−1g′ ∈ H. Otherwise, gH ∩ g′H = ∅. In other words, the cosets of H are a partition of G that
comes from the relation is gg̃′ ⇔ g−1g′ ∈ H. The index of H is the number of cosets, which is |G|/|H|. It is
denoted [G : H ].

For example, if H = {(t, 0, 0) | t ∈ Fq} ⊆ F3
q = G. then its cosets vH (or in the more common additive

notation v+H) are the affine lines {(b1 + t, b2, b3) | t ∈ Fq} for every (b1, b2, b3) ∈ G.

2 Coset complex and examples

In this section we present the construction for triangle complexes. The general construction is described in
[KO18].

Let G be a group and let K1,K2,K3, ...,Kd be three subgroups. The of our construction are X(0) =
A1 ∪A2 ∪A3... ∪Ad where Ai = {gKi | g ∈ G}. The (d− 1)-faces are

X(d− 1) =
{

{g1K1, g2K2, ..., gdKd}

∣∣∣∣∣
d⋃

i=1
giKi , ∅

}
.

For the rest of this talk, d ∈ {2, 3}.
Let us describe a couple of examples.

Example 3. Let G = F3
q . Let Kx = {(0, y, z) | y, z ∈ F2}, Ky = {(x, 0, z) | x, z ∈ F2} and Kz =

{(x, y, 0) | x, y ∈ F2}.
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– v1Kxv2Kx if and only if their first coordinate is the same. Similarly for Ky,Kz.

– Hence there are q-cosets for every subgroup.

– Every possible triangle between the three parts (Ai,Aj ,Ak) participates in X. Since every three of the
affine plains above intersect in a point.

– Thus, this example yields the complete 3-complex with faces of size q.

Example 4. Recall that G = S4 are all permutations on four elements. Let Ki = {σ ∈ S4 | σ(i) = i}. We
take as our subgroups K1,K2,K3 ⊆ S4.

– One can verify that the coset of τ so that τ (i) = j is τKi = {σ ∈ S4 | σ(i) = j}.

– Denote such the cosets of Ki by Ki→j = {σ ∈ S4 | σ(i) = j}.

– The triangles are all {K1→i,K2→j ,K3→k} so that i, j, k are distinct.

– In particular, a link of a face is a 6-cycle.

4.1 Basic Properties

Claim 4.1. The triangle {g1K1, g2K2, g3K3} ∈ X if and only if g1K1 ∩ g2K2 ∩ g3K3 , ∅.

Proof. If {g1K1, g2K2, g3K3} ∈ X then there is a g so that gK1 = g1K1, gK2 = g2K2, gK3 = g3K3. In
particular g is in the intersection and it is not empty.

On the other hand, take some {g1K1, g2K2, g3K3} with a non-empty intersection, and take some g in the
intersection. In particular it holds that gKi = giKi so this face is equal to {gK1, gK2, gK3}. □

As a corollary to this claim we see that the intermediate faces consist of cosets with non-trivial intersection,
that is X(1) =

{
{g1Ki, g2Kj}

∣∣ g1Ki ∩ g2Kj , ∅
}

.
Next we will investigate when this complex is connected.

Lemma 4.2. The 1-skeleton of X is connected if and only if ⟨K1 ∪K2 ∪K3⟩ = G. That is, if for every
g ∈ G there exists m ∈ N and {gi ∈ Kji}m

i=1 so that g = g1 · g2 · ... · gm.

To show this we need the following useful claim.

Claim 4.3. g1K1 ∼ g2K2 if and only if g−1
1 g2 ∈ K1K2 (i.e. there exists h1 ∈ K1,h2 ∈ K2 so that

g−1
2 g1 = h1h2).

Proof of Claim 4.3. On the one hand, if g1Ki ∼ g2K2 then there is some g so that gKi = giKi. In particular,
g−1g1 ∈ K1, g−1g2 ∈ K2 and thus g−1

1 gg−1g2 ∈ K1K2.
On the other hand, if g−1

1 g2 = k1k2 then g1k1 = g2k2 ∈ g1K1 ∩ g2K2. □

Proof of Lemma 4.2. We show that for every g there is some i ∈ {1, 2, 3} we can get from K1 to gKi (and
then we can get to any gKj by one more edge). Assume that g = g1g2...gm where gj ∈ Kij . Our path will
be P = (K1, g1Ki1 , (g1g2)Ki2 , ..., gKim . Note that for every j, the edge (g1g2...gj)Kij , (g1g2...gjgj+1)Kij+1

exists. Indeed, note that (g1g2...gj)−1(g1g2...gjgj+1) ∈ Kij+1 ⊆ KijKij+1 hence by Claim 4.3 the edge
appears in X.
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Assume that the graph is connected, and we show that G is generated by the Ki’s. Let g ∈ G and
consider a path from K1 to gK1, P = (K1, g1Ki2 , g3Ki3 , ..., gmK1 = gK1). Note that g−1

j gj+1 ∈ KijKij+1 ⊆
⟨K1,K2,K3⟩. Hence

g = gm = gm−1(g
−1
m−1g) = gm−2(g

−1
m−2gm−1)(g

−1
m−1g) = ...

= g1(g
−1
1 g2)...(g−1

m−1g).

□

Next we show that this complex is very symmetric.

Claim 4.4. For every g ∈ G there is an automorphism of simplicial complexes ψ : X(0) → X(0),ψ(hKj) =

(g−1h)Kj that sends gKi to Ki. In particular, the links of all gKi are isomorphic to the link of Ki (the
subgroup itself).

Proof. The non-trivial part of proving this is to show that ψ is well defined. That is, that if h1Kj = h2Kj

then g−1h1Kj = g−1h2Kj . But this is true since (g−1h1)−1g−1h2 = h−1
1 h2. The rest is follows easily from

the construction. □

As a corollary we get that the links of gKi are isomorphic to Ki.

Claim 4.5. The link of v = gKi is (isomorphic to) the bipartite graphs between cosets of Ki ∩Kj and Ki ∩Kℓ

where two vertices are connected if their intersection isn’t empty. That is XgKi
� X(ki;Ki ∩Kj ,Ki ∩Kℓ).

Proof. By Claim 4.4 we can prove this without loss of generality on v = K1. The link of K1 consists of
vertices XK1(0) = {gK2, gK3 | g ∈ K1} and edges XK1(1) = {{gK2, gK3} | g ∈ K1}. Define an isomorphism
from ϕ : Xv → X(K1;K1 ∩K2,K1 ∩K3) defined by ϕ(gKi) = g(K1 ∩Ki) where g ∈ K1. This is well
defined in the link, since gKi = g′Ki and g, g′ ∈ K1 imply that g′−1g ∈ K1 ∩ Ki which implies that
g(K1 ∩Ki) = g′(K1 ∩Ki).

Checking that this is a bijection and that it preserves edges is left to the reader. □

5 Concrete complexes

Let q be a prime power. Let R = Fq [t]/⟨tm⟩ (i.e. all polynomials of degree ⩽ m− 1 where our multiplication
is done modulo tm = 0).

The group G we will use is G = SL3(R) = {A ∈ M3(R) | det(A) = 1}. Our three subgroups will be

K1 =


1 ℓ1(x) Q(x)

0 1 ℓ2(x)

0 0 1

 ∈ M3(R)

∣∣∣∣∣∣∣ deg(ℓ1(x)), deg(ℓ2(x)) ⩽ 1, deg(Q(x)) ⩽ 2

 ,

K2 =


 1 0 0)
Q(x) 1 ℓ1(x)

ℓ2(x) 0 1

 ∈ M3(R)

∣∣∣∣∣∣∣ deg(ℓ1(x)), deg(ℓ2(x)) ⩽ 1, deg(Q(x)) ⩽ 2

 ,

K3 =


 1 ℓ1(x) 0

0 1 0
ℓ2(x) Q(x) 1

 ∈ M3(R)

∣∣∣∣∣∣∣ deg(ℓ1(x)), deg(ℓ2(x)) ⩽ 1, deg(Q(x)) ⩽ 2

 ,

(5.1)
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These groups may look arbitrary, and indeed the reason they yield high dimensional expanders is because
some representation theoretic properties they have, which are not apparent in first sight. Still there is an
elementary description of their links.

5.1 Number of vertices and connectivity

Observation 5.1. The size of every Ki is q7 and limm→∞ |G| = ∞. Thus by taking m → ∞ we get a family
of high dimensional expanders that grow to infinity.

Moreover, these three groups generate G. A proof for this fact could be found in [KO18, Section 3] (see
also [HS19] for a simpler proof that the size of ⟨K1,K2,K3⟩ goes to infinity). By claim Claim 4.5, the link
structure doesn’t depend on G at all; it is always (isomorphic to) X(Ki;Ki ∩Kj ,Ki ∩Kℓ). Hence these
complexes are a growing family of bounded degree connected simplicial complexes.

5.2 Structure of the links

In this section we describe the links of X. That is, we understand the structure of X(Ki;Ki ∩Kj ,Ki ∩Kℓ).
We will see the structure of links of type K1. The other links look the same. Let H2 = K1 ∩K2,H3 =

K1 ∩K3 and let Y = X(K1,H2,H3).

Claim 5.2. Let

M2(ℓ(x),Q(x)) =

1 ℓ(x) Q(x)

0 1 0
0 0 1

 ;M3(ℓ(x),Q(x)) =

1 0 Q(x)

0 1 ℓ(x)

0 0 1

 .

Then

1. Every coset H2 has a unique representative M2(ℓ(x),Q(x)).

2. Every coset H3 has a unique representative M3(ℓ(x),Q(x)).

3. Every coset M2(ℓ(x),Q(x))H2 ∼ M3(ℓ′(x),Q′(x))H3 if and only if Q′(x) −Q(x) = ℓ(x)ℓ′(x).

Proof. For the first item we notice that |K1| = q7 and ||Hi|| = q2, so there are q5 different cosets.
Hence to show the first item it is enough to show that M2(ℓ(x),Q(x))H2 , M2(ℓ′(x),Q′(x))H2 when-
ever M2(ℓ(x),Q(x)) , M2(ℓ′(x),Q′(x)), since this implies that the M2(ℓ(x),Q(x)) define all possible q5

cosets. Indeed, by direct calculation it holds that M2(ℓ(x),Q(x))H2 = M2(ℓ′(x),Q′(x))H2 if and only if
M2(ℓ(x),Q(x))−1 ·M2(ℓ′(x),Q′(x)) ∈ H2. By a direct calculation this is

M2(ℓ(x),Q(x))−1 ·M2(ℓ
′(x),Q′(x)) =

1 ℓ′(x) − ℓ(x) Q′(x) −Q(x)

0 1 ℓ(x)

0 0 1

 .

This is in H2 if and only if the non-diagonal entries in the first row are zero, which is if and only if
ℓ = ℓ′,Q = Q′ and the first item follows.

The proof of the second item is similar to the first item.
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As for the third item, we use Claim 4.3. It is easy to check that

(M2(ℓ(x),Q(x))−1M3(ℓ
′(x),Q′(x)) =

1 −ℓ(x) Q′(x) −Q(x) − ℓ(x)ℓ′(x)

0 1 ℓ′(x)

0 0 1

 .

Furthermore, one may verify that H2H3 = {h2h3 | h2 ∈ H2,h3 ∈ H3} is equal to
1 ℓ1(x) 0

0 1 ℓ2(x)

0 0 1


∣∣∣∣∣∣∣ deg(ℓ1(x)), deg(ℓ2(x)) ⩽ 1

 .

Thus by Claim 4.3, M2(ℓ(x),Q(x))H2 ∼ M3(ℓ′(x),Q′(x))H3 if and only if the top right entry is 0) □

Hence the following bipartite graph G = (L,R,E) is an equivalent description to Y :

L = R = {(ℓ(x),Q(x)) | deg(ℓ(x)) ⩽ 1, deg(Q(x)) ⩽ 2} ,

E =
{
(Q, ℓ(x)), (Q′(x), ℓ′(x))

∣∣ Q′(x) −Q(x) = ℓ(x)ℓ′(x)
}

.

These graphs are expanders.

Claim 5.3. The links of X are 1√
q -one-sided spectral expanders.

We do not prove this here. For a representation theoretic proof of this see [KO18], for a more elementary
proof see [HS19]. A third proof that is very simple, provided you feel comfortable with Cayley graphs and
the Schwartz-Zippel lemma, is done by [OP22].
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