
COMPOSITION OF LOW-ERROR 2-QUERY PCPS USING
DECODABLE PCPS∗

IRIT DINUR† AND PRAHLADH HARSHA‡

Abstract. The main result of this paper is a generic composition theorem for low-error two-
query probabilistically checkable proofs (PCPs). Prior to this work, composition of PCPs was well-
understood only in the constant error regime. Existing composition methods in the low-error regime
were non-modular (i.e., very much tailored to the specific PCPs that were being composed), resulting
in complicated constructions of PCPs. Furthermore, until recently, composition in the low-error
regime suffered from incurring an extra ‘consistency’ query, resulting in PCPs that are not ‘two-
query’ and hence, much less useful for hardness-of-approximation reductions.

In a recent breakthrough, Moshkovitz and Raz [In Proc. 49th IEEE Symp. on Foundations of
Comp. Science (FOCS), 2008 and J. ACM, 57(5), 2010] constructed almost linear-sized low-error 2-
query PCPs for every language in NP. Indeed, the main technical component of their construction is
a novel composition of certain specific PCPs. We generalize and abstract their composition method,
thereby giving a modular and simpler proof of their result.

To facilitate the modular composition, we introduce a new variant of PCP, which we call a
decodable PCP (dPCP). A dPCP is an encoding of an NP witness that is both locally checkable and
locally decodable. The dPCP verifier in addition to verifying the validity of the given proof like a
standard PCP verifier, also locally decodes the original NP witness. Our composition is generic in
the sense that it works regardless of the way the component PCPs are constructed.

Key words. probabilistically checkable proofs, PCP, composition, locally decodable, low sound-
ness error

AMS subject classifications. 68Q17

1. Introduction. Probabilistically checkable proofs (PCPs) provide a proof for-
mat that enables verification with only a constant number of queries into the proof.
This is formally captured by the (by now standard) notion of a probabilistic verifier.

Definition 1.1 (PCP Verifier). A PCP verifier V for a language L is a poly-
nomial time probabilistic algorithm that behaves as follows: On input x, and oracle
access to (proof) string π (over an alphabet Σ), the verifier reads the input x, tosses
some random coins r, and based on x and r computes a window I = (i1, . . . , iq) of
indices to read from π, and a predicate f : Σq → {0, 1}. The verifier then accepts iff
f(πI) = 1.

• The verifier is complete if for every x ∈ L there is a proof π accepted with
probability 1. I.e., ∃π, PrI,f [f(πI) = 1] = 1.

• The verifier is sound with soundness error δ < 1 if for any x 6∈ L, every proof
π is accepted with probability at most δ. I.e., ∀π, PrI,f [f(πI) = 1] ≤ δ.

The celebrated PCP Theorem [AS98, ALM+98] states that every language in
NP has a verifier that is complete and sound with a constant δ < 1 soundness error
while using only a logarithmic number of random coins, and reading only q = O(1)
proof bits. Naturally, (and motivated by the fruitful connection to inapproximability
due to [FGL+96]), much attention has been given to obtaining PCPs with “good”

∗A preliminary version of this paper appeared in the Proc. 50th IEEE Symp. on Foundations of
Comp. Science (FOCS) 2009 [DH09].
†Weizmann Institute of Science, ISRAEL. email: irit.dinur@weizmann.ac.il. Research sup-

ported in part by the Israel Science Foundation and by the Binational Science Foundation and by
an ERC grant 239985.
‡Tata Institute of Fundamental Research (TIFR), Mumbai, INDIA. email:

prahladh@tifr.res.in. Part of this work was done while the author was at Technion, Israel
Institute of Technology and was supported by a fellowship from the Aly Kaufman Foundation

1

2 I. Dinur and P. Harsha

parameters, such as q = 2, smallest possible soundness error δ, and smallest possible
alphabet size |Σ|. These are the parameters of focus in this paper.

How does one construct PCPs with such remarkable proof checking properties?
In general, it is easier to construct such PCPs if we relax the alphabet size |Σ| to be
large (typically super-constant, but sub-exponential). This issue is similar to a well-
known issue that arises in coding theory; wherein it is relatively easy to construct
codes with good error-correcting properties over a large, super constant sized, alpha-
bet (e.g., Reed-Solomon codes). Codes over a constant-sized alphabet (e.g., GF(2))
are then obtained from these codes by (repeatedly) applying the “code-concatenation”
technique of Forney [For66]. The equivalent notion in the context of PCP construc-
tions is the paradigm of “proof composition”, introduced by Arora and Safra [AS98].
Informally speaking, proof composition is a recursive procedure applied to PCP con-
structions to reduce the alphabet size. Proof composition is applied (possibly several
times over) to PCPs over the large alphabet to obtain PCPs over a small (even binary)
alphabet.

Proof composition is an essential ingredient of all known constructions of PCPs.
Composition of PCPs with high soundness error (greater than 1/2) is by now well un-
derstood using the notion of PCPs of proximity [BGH+06] (called assignment testers
in [DR06]) (see also [Sze99]). These allow for modular composition, in the high
soundness error regime which in turn led to alternate proofs of the PCP Theorem
and constructions of shorter PCPs [BGH+06, Din08, BS08]. However, these compo-
sition theorems are inapplicable when constructing PCPs with low-soundness error
(arbitrarily small soundness error or even any constant less than 1/2). (See survey on
constructing low-error PCPs by Dinur [Din08, Section 4.3] and beginning of §4 for a
detailed explanation of this limitation).

Our first contribution is a definition of an object which we call a decodable PCP,
which allows for clean and modular composition in the low-error regime.

1.1. Decodable PCPs (dPCPs). Consider a probabilistically checkable proof
for the language CircuitSat (the language of all satisfiable circuits). The natural
NP proof for CircuitSat is simply a satisfying assignment. An intuitive way to
construct a PCP for CircuitSat is to encode the assignment in a way that enables
probabilistic checking. This intuition guides all known constructions, although it is
not stipulated in the definition.

In this work, we make the intuitive notion of proof encoding explicit by introduc-
ing the notion of a decodable PCP (dPCP). A dPCP for CircuitSat is an encoding
of the satisfying assignment that can be both verified and decoded locally in a proba-
bilistic manner. In this setting, the verifier is supposed to both verify that the dPCP
is encoding a satisfying assignment, as well as to decode a symbol in that assignment.
More precisely, we define a PCP decoder for CircuitSat to be (along the lines of
Definition 1.1) a probabilistic algorithm that is given an input circuit C, oracle access
to a dPCP π, and, in addition, an index i. Based on C, i and the randomness r it
computes a window I and a function f (rather than a predicate). This function is
supposed to evaluate to the i-th symbol of a satisfying assignment for C; or to reject.

• The PCP decoder is complete if for every y such that C(y) = 1 there is a
dPCP π such that Pri,I,f [f(πI) = yi] = 1.

• The PCP decoder has soundness error δ and list size L if for any (purported)
dPCP π there is a list of ≤ L valid proofs such that the probability (over the
index i and (I, f)) that f(πI) is inconsistent with the list but not reject is at
most δ.

Composition of low-error 2-query PCPs 3

The list of valid proofs can be viewed as a “list decoding” of the dPCP π. Since
we are interested in the low soundness error regime, list-decoding is unavoidable. Of
course, we can define dPCPs for any NP language and not just CircuitSat, but we
focus on CircuitSat since it suffices for the purpose of composition.

The notion of dPCPs allows for modular composition in the case of low soundness
error (described next) in analogy to the way PCPPs and assignment testers [BGH+06,
DR06] allow for modular composition in the case of high soundness error. Indeed,
the notion of dPCPs allows us to generalize and abstract the composition method of
Moshkovitz and Raz [MR10b], thereby giving a simpler proof of their result.

Finally, we note that decodable PCPs are not hard to come by. Decodable
PCPs or variants of them are implicit in many PCP constructions [AS03, RS97,
DFK+11, BGH+06, DR06, MR10a, MR10b] and existing PCP constructions can of-
ten be adapted to yield decodable PCPs. In §6 we give more details on how to con-
struct dPCPs relying on known algebraic techniques. An alternate, combinatorial,
construction of dPCPs was given in full detail by [DM11] following the proceedings
version of this work.

1.2. Composition with dPCPs. There is a natural and modular way to com-
pose a PCP verifier1 V with a PCP decoder D. The composed PCP verifier V ′ begins
by simulating V on a probabilistically checkable proof Π. It determines a set of queries
into Π (a local window I), and a local predicate f . Instead of directly querying Π and
testing if f(ΠI) = 1, V ′ relies on the inner PCP decoder D to perform this action.
For this task, the inner PCP decoder D is supplied with a dedicated proof that is
supposedly an encoding of the relevant local view ΠI . The main issue is consistency:
the composed verifier V ′ must ensure that the dedicated proofs supposedly encoding
the various local views are consistent with the same Π (i.e. they should be encodings
of local views coming from a single valid PCP for V). This is achieved easily with
PCP decoders: the composed verifier V ′ asks D to decode a random value from the
encoded local view, and compares it to the appropriate symbol in Π.

The above description of composition already appears2 to lead to a modular pre-
sentation of the composition performed in earlier low-error PCP constructions [AS03,
RS97, DFK+11, MR10a]. But at the same time, like these compositions, it incurs an
additional query per composition, namely the “consistency” query to the outer PCP
Π. (The queries made by V ′ are the queries of D plus the one additional consistency
query to Π).

Nevertheless, inspired by [MR10b] and equipped with a better understanding of
composition in the low soundness error case, we are, now, in a position to remove this
extra consistency query.

1.3. Composition with only two queries. Our main contribution is a com-
position theorem that does not incur an extra query. The extra query above comes
from the need to check that all the inner PCP decoders decode to the same symbol.
This check was performed by comparing the decoded symbol to the symbol in the
outer PCP Π. Instead, we verify consistency by invoking all the inner PCP decoders
that involve this symbol in parallel, and then checking that they all decode to the
same symbol. This avoids the necessity to query the outer PCP Π for this symbol
and saves us the extra query.

1The verifier needs to be a robust PCP as in Definition 2.3, but we gloss over this issue in the
introduction.

2We have not verified the details.

4 I. Dinur and P. Harsha

We describe our new composed verifier V ′ more formally below. As before, let V
be a PCP verifier, and D a PCP decoder.

1. The composed PCP verifier simulates V on a hypothetical PCP Π; it chooses
a random index i in Π, and then determines all the possible random strings
R1, . . . , RD that cause V to query this index.

2. For each random string Rj (j = 1 . . . D), V ′ needs to check that the corre-
sponding local view of Π would have lead V to accept. This is done by running
D, for each j = 1 . . . D, on a dedicated proof π(Rj) that is supposedly the
encoding of the j-th local view (i.e., the one generated by V on random string
Rj) into Π. Furthermore, V ′ expects D to decode the symbol Πi.

3. Finally V ′ accepts if and only if all the D parallel runs of D accept and output
the same symbol.

Observe that the composed verifier V ′ does not access the PCP for V (i.e., Π) at
all, rather only the dedicated proofs for the inner PCP decoders. The outer PCP Π
is only “mentally” present in order to compute R1, . . . , RD. A few important points
are in order.

(i) Two Queries and Robust Soundness: As described, V ′ makes many
queries rather than just two. This is fixed by the following easy transformation: the
first query will supposedly be answered by the complete local view V ′ expects to read,
and the second query will consist of one random symbol in the local view of V ′. The
soundness error of the resulting two-query PCP is equal to the robust soundness error
of V ′: an upper bound on the average agreement between a local view read by V ′ and
an accepting local view. This interesting correspondence between two query PCPs
and robust PCPs is true in general and described in full in §2.2.
Thus, drawing on the above correspondence, the fact that V ′ has low robust soundness
error implies the required two-query composition. Of course, the composition could
have been described entirely in the 2-query PCP language.

(ii) Size of alphabet or window size: The purpose of composition is to
reduce the alphabet size, or, in the language of robust PCPs, to reduce the window
size, that is, the number of queries made by V ′. Recall that V ′ runs D in parallel
on all D local views corresponding to R1, . . . , RD. Thus, the window size equals the
query complexity of D multiplied by the number D of local views (which we refer to
as the proof degree of V). Hence composition is meaningful only if the proof degree is
small to begin with (otherwise, the local window of V ′ is not smaller than that of V
and we haven’t gained anything from composition). In general PCPs, the proof degree
is very high. In fact, this has been one of the obstacles to achieving this result prior
to [MR10b]. However, a key observation of [MR10b] is that it is easy to reduce the
proof degree using standard tools from derandomization (i.e., expander replacement).
Viewed alternatively, one can handle V of arbitrarily high proof degree by making the
following change to V ′. Instead of running D to verify the local tests corresponding
to all of R1, . . . , RD, V ′ can pseudo-randomly sample a small number of these and run
D only on the selected ones.
The fact that the query complexity is at least D is an inherent bottleneck in our
composition method. Combined with the bound of D ≥ 1/δ, this poses a limitation
of this technique towards achieving exponential dependence of the error probability
on alphabet size, a point discussed later in this introduction.

The idea of comparing the symbols decoded by the inner PCP decoders against
each other in parallel instead of comparing them against the symbol in the outer
PCP is due to Moshkovitz and Raz [MR10b]. In this sense, the new composition is

Composition of low-error 2-query PCPs 5

an abstraction of the [MR10b] composition technique, which was tailor-made for the
specific algebraic inner and outer PCPs constructed in [MR10b]3. The new composi-
tion is generic in the sense that it works regardless of how the original components V
and D are constructed.

1.4. Background and Motivation. Let us step back to give some motivation
for obtaining PCPs with small soundness error and two queries (for a more compre-
hensive treatment, see [MR10b]). Two is the absolute minimal number of queries
possible for a non-trivial PCP. Thus, it is interesting to find what are the strongest
2-query PCPs that still capture NP. However, the main motivation for two query
PCPs is for proving hardness of approximation results.

Two query PCPs with soundness error δ are (more or less) equivalent to Label-
Coverδ, which is a promise problem defined as follows4: The input is a bipartite
graph and an alphabet Σ, and for each edge e there is a function fe : Σ → Σ, which
we think of as a constraint on the labels of the vertices. The constraint is satisfied
by values a and b iff fe(a) = b. The problem is to distinguish between two cases: (1)
there exists a labeling of the vertices satisfying all constraints, or (2) every labeling
satisfies at most δ fraction of the constraints.

Label-Coverδ is probably the most popular starting point for hardness of ap-
proximation reductions. In particular, even though there are 3-query PCPs with much
smaller soundness error, they currently have far fewer applications to inapproxima-
bility.

The fact that Label-Coverα is NP-hard for some constant α < 1 (and constant
alphabet size) is nothing but a reformulation of the PCP Theorem [AS98, ALM+98].
Strong inapproximability results, however, require5 NP-hardness of Label-Coverδ
for arbitrarily small, sometimes even sub-constant soundness error δ. There are two
known routes to obtaining hardness results for Label-Coverδ with small soundness
error δ. The first, is via an application of the parallel repetition theorem of Raz [Raz98]
to the Label-Coverα instance produced by the PCP Theorem. However, this ap-
plication of the repetition theorem blows up the size of the problem instance from
n to nO(log(1/δ)) and thus remains polynomial only for constant, though arbitrarily
small, δ. One might try to get a polynomial sized construction by carefully choosing
a subset of the entire parallel repetition construction. This is known as the problem
of “derandomizing the parallel repetition theorem”. Feige and Kilian [FK95] showed
that such derandomization is impossible under certain (rather general) conditions.
Nevertheless, in a recent paper, Impagliazzo et. al. [IKW09] obtained a related de-
randomization, which lead to a derandomized parallel repetition theorem in [DM11].
This does give a low-error PCP that has the same kind of overly-large alphabet size
parameter as do the algebraic constructions described below. Another potential di-
rection is to use the gap-amplification technique of Dinur [Din07], however as shown
by Bogdanov [Bog05] gap-amplification fails below a soundness error of 1/2.

The second route to sub-constant δ goes through the classical (algebraic) con-
struction of PCPs. Indeed, hardness for label cover with sub-constant error can be

3The composition of [MR10b] worked with locally decode/reject codes (LDRC), instead of outer
and inner PCPs. See §3 for more details.

4We focus on the important special case of projection constraints. For a more accurate definition,
see Definition 2.2.

5In some cases the hardness gap is inversely proportional to δ, and in others, it is the sum of two
terms: a problem-dependent term (e.g. 7/8 in H̊astad’s hardness result [H̊as01] for 3-SAT), and a
“low order” term that is polynomial in δ.

6 I. Dinur and P. Harsha

obtained from the low soundness error PCPs of [RS97, AS03, MR08], more or less
by omitting the composition steps, and carefully combining queries. The following
“manifold-vs.-point” PCP construction has been folklore since [RS97, AS03], and for-
mally described in [MR10b].

Theorem 1.2 (Manifold-vs.-Point PCP). There exists a constant c > 1 such that
the following holds: For every 1

n ≤ δ ≤ 1
(logn)c , there exists an alphabet Σ of size at

most exp(poly(1/δ)) such that Label-Coverδ over Σ is NP-hard.
The above result is unsatisfactory as the size of the alphabet |Σ| is superpolyno-

mial in 1/δ. Combined with the fact that hardness-of-approximation reductions are
usually exponential in |Σ| (and always at least polynomial in |Σ|) the super polyno-
mial size of Σ renders the above theorem useless. The situation can be redeemed if the
theorem could be extended to the entire range of smaller |Σ| (with a corresponding
increase in δ).

A natural way to perform this extension would be to apply the composition
paradigm to the PCPs constructed in Theorem 1.2 and reduce the alphabet size. In-
deed, this is how one constructs PCPs with sub-constant error and a constant number
of queries for the entire range of Ω(1) ≤ |Σ| ≤ exp((log n)1−ε) [RS97, AS03, DFK+11].
However, the composition a la [RS97, AS03, DFK+11] incurs at least one additional
query, which means that the final PCP is no longer “two-query”, so it does not
lead to a hardness result for label cover. Alternatively, the composition technique
of [BGH+06, DR06] using PCPs of proximity or assignment testers is inapplicable
in this context as it fails to work for soundness error less than 1/2. Thus, all earlier
composition techniques are either inapplicable in the low-error regime or if applicable,
incur an extra query and thus, are no longer in the framework of the Label-Cover
problem.

1.5. The Two-Query PCP of Moshkovitz and Raz [MR10b]. In a recent
breakthrough, [MR10b] show that the above theorem can in fact, be extended to the
entire range of δ and |Σ| (and maintaining |Σ| ≈ exp(poly(1/δ))).

Theorem 1.3 ([MR10b]). For every δ ∈ (1/polylogn, 1), there exists an alphabet
Σ of size at most exp(poly(1/δ)) such that Label-Coverδ over Σ is NP-hard (in fact,
even under nearly length preserving reductions).

The main technical component of their construction is a novel composition of
certain specific PCPs with low soundness error that does not incur an additional
query per composition. However, the construction is so organically tied to the specific
algebraic components that are being composed, as to make it extremely difficult to
differentiate between the details of the PCP, and what it is that makes the composition
go through.

We give a modular and simpler proof of this theorem using our composition
theorem in §6. Our proof relies on a PCP system based on the manifold-vs.-point
construction (as in Theorem 1.2). The parameters we need are rather weak: it is
enough that on input size n the PCP decoder / verifier makes nα queries and has
soundness error δ = 1/nβ , for small constants α, β. After one composition step the

number of queries goes (roughly) from nα to nα
2

, and so on. After each composition
step we add a combinatorial step, consisting of degree and alphabet reduction, that
prepares the verifier for the next round of composition. After i rounds the number
of queries is about nα

i

, and the soundness error is about δ = 1/nO(αi). Choosing
1 ≤ i ≤ log log n appropriately gives us the result.

The modular composition theorem allows us to easily keep track of a super-
constant number of steps, thus avoiding the need for another tailor-made Hadamard-

Composition of low-error 2-query PCPs 7

based PCP which was required in the proof of [MR10b]. (The latter approach could
also be implemented in our setting).

Generic transformations on Label-Cover: We also give generic transformations
on Label-Cover, such as alphabet reduction, degree reduction, and regularization,
which are needed before applying composition. These transformations incur only a
moderate cost to the other parameters. To the best of our knowledge, the alphabet
reduction is new, and may be of independent interest. (The method for proving the
regularizing transformation is due to [MR10b]).

Randomness and the length of the PCP: The above discussion completely
ignores the randomness complexity of the underlying PCPs. However, it is easy to
verify that the composition described above is, in fact, randomness efficient; this is
because the same inner randomness can be used for all the D parallel runs of the inner
PCP decoder. Thus, if we start from a version of Theorem 1.2 (the manifold-vs.-point
PCP) based on an almost linear-size low-degree test (c.f., [MR08]), we obtain a nearly
length preserving version of Theorem 1.3 (i.e., a reduction taking instances of size n
to instances of size almost linear in n). Furthermore, the fact that we account for the
input index i separately from the inner randomness r of the PCP decoder leads to an
even more randomness-efficient composition, however, we do not exploit this fact in
the proof of Theorem 1.3.

Polynomial dependence of soundness error on alphabet size: Theorem 1.3
suffers from the following bottleneck: the error probability δ is inverse logarithmic
(and not inverse-polynomial) with respect to the size of the alphabet Σ. This lim-
itation is inherent in our composition method as discussed above. This should be
contrasted with the “sliding-scale conjecture” of Bellare et al. [BGLR93], which con-
jectures that there exists a constant-query PCP verifier for NP in which the alphabet
size is |Σ| ≤ n and the soundness error is δ ≤ poly(1/ |Σ|). A specialised version
of this conjecture is the “two-query BGLR conjecture”6: For every |Σ| ∈ (1, n),
Label-Coverδ over Σ is NP-hard for δ = poly(1/|Σ|). This remains an important
open question.

Organization. The rest of the paper is organized as follows. In §2 we define the
known notions of robust PCPs and label cover, and describe the syntactic equivalence
between them. We introduce decodable PCPs in §3. The main result of the paper,
two-query composition theorem, is then presented in §4. This is then followed by §5
which contains various basic transformations of label cover such as degree reduction,
alphabet reduction, etc. In §6, we construct the building blocks for composition
and then repeatedly compose them to obtain Theorem 1.3. Various extensions of
decodable PCPs are discussed in Appendix A.

2. Preliminaries.

2.1. Notation. We begin by formalizing our notation while dealing with strings
over some alphabet Σ. For any string π ∈ Σn and I ⊆ [n], a subset of indices,
we refer by πI , the restriction of π to the indices in I. In other words, if I ={
i1 < i2 < . . . < i|I|

}
, then πI , πi1πi2 · · ·πi|I| . For any I =

{
i1 < i2 < . . . < i|I|

}
⊆

[n], a subset of indices, and index i ∈ I such that ik = i, we refer to k as the index

6Bellare et al. did not conjecture this specialized two-query version as at that time two-query
PCPs, aka Label-Cover had not yet assumed the central position they hold today in the area of
hardness approximation. Given what we know today, this two-query version of the conjecture seems
like the more useful conjecture.

8 I. Dinur and P. Harsha

of i within I and denote the same by indexi∈I . Observe that this re-indexing satisfies
the property that for any string π ∈ Σn, we have (πI)(indexi∈I) = πi. We will reserve
the symbol ⊥, which will not be a member of any of the alphabets we use, to denote
“reject” or “fail”.

For any two strings x, y ∈ Σn, the (relative) agreement between x and y, denoted
by agr(x, y), is defined as the fraction of locations on which x and y agree (i.e.,
agr(x, y) , Pri∈[n][xi = yi]). The agreement between a string and a set of strings
L ⊆ Σn is defined in the natural manner: agr(x, L) = maxy∈L(agr(x, y)). For any set
of strings L ⊆ Σn and index i ∈ [n], we denote by Li the set of symbols obtained by
restricting the strings in L to the ith index, i.e., Li = {wi | w ∈ L}. The following
fact about agreement of strings will come useful.

Fact 2.1. Let L ⊆ Σn and s ∈ Σn. Then agr(s, L) ≥ |L|−1 · Pri[si ∈ Li].
Proof. The event si ∈ Li is the union of the events {si = wi} for all w ∈ L, hence

|L|−1 · Pr
i

[si ∈ Li] ≤ |L|−1 ·
∑
w∈L

Pr
i

[si = wi] = E
w∈L

[agr(s, w)] ≤ agr(s, L).

Now, for some terminology for circuits. Unless otherwise stated, all circuits in
this paper will have fan-in 2 and fan-out 2 and we allow arbitrary unary and binary
Boolean operations as internal gates. The size of a circuit is the number of gates. The
typical NP-complete language we will refer to is CircuitSat, the set of satisfiable
Boolean circuits, defined as follows: CircuitSat = {C | ∃w,C(w) = 1} . Note that
the instance C is specified as a circuit and not a truth-table in the above definition.

Sometimes, we will refer to circuits computing a function over a non Boolean
alphabet Σ and outputting a symbol from a (possibly different) non-Boolean alpha-
bet σ, such as f : Σn → σ. This is merely shorthand for the equivalent function
f ′ : {0, 1}n·log|Σ| → {0, 1}log|σ|, where Σ and σ are viewed as bit-strings of length
log |Σ| and log |σ| respectively. The circuit complexity of such a function f is defined
to be the circuit complexity of f ′. When working with the alphabet Σ, we will fre-
quently refer to the corresponding NP-complete language, CircuitSatΣ, the set of
satisfiable Boolean circuits over the alphabet Σ, defined as follows: CircuitSatΣ =
{f : Σn → {0, 1} | ∃w ∈ Σn, f(w) = 1} . As in the Boolean setting, the instance f :
Σn → {0, 1} is specified as a circuit Cf : {0, 1}n·log|Σ| → {0, 1}.

2.2. Label Cover and Robust PCPs. In this section, we point to an interest-
ing correspondence between two known objects, namely, the Label-Cover problem
and robust PCPs. We first define these two objects (in §2.2.1 and §2.2.2), and then
(in §2.2.3) show the equivalence of the following two statements (a) a language L is
reducible to Label-Coverδ and (b) L has a robust PCP with soundness error δ. This
equivalence is very important in this paper, as we move back and forth between the
two views: the composition theorem is more natural to describe in terms of robust
PCPs, while the other manipulations (such as degree and alphabet reduction) are
easier to describe in terms of Label-Cover. (The application of the final result for
inapproximability also requires the Label-Cover formulation). A weak equivalence
of this nature has been implicitly observed (at least in one direction) earlier, but, to
the best of our knowledge, this is the first time a formal syntactic equivalence between
the two notions has been established.

2.2.1. Label Cover. We begin with the definition of the Label-Cover prob-
lem. Formally defined by Arora et al. [ABSS97], but implicit in several earlier hardness

Composition of low-error 2-query PCPs 9

reductions, the Label-Cover problem has been the starting point of a long list of
hardness reductions.

Definition 2.2 (Label-Cover). An instance of the Label-Cover problem is
specified by a quadruple (G,Σ1,Σ2, F) where G = (U, V,E) is a bipartite graph, Σ1

and Σ2 are two finite sized alphabets and F = {fe : Σ1 → Σ2 | e ∈ E}, is a set of
functions (also called projections), one for each edge.

A labeling L = (ΣU1 ,Σ
V
2), (i.e., a pair of labelings L1 : U → Σ1 and L2 : V → Σ2)

is said to satisfy an edge (u, v) iff f(u,v)(L1(u)) = L2(v). The value of an instance is
the maximal fraction of edges satisfied by any such labeling.

For any δ ∈ (0, 1), the gap problem Label-Coverδ is the promise problem of
deciding if a given instance has value 1 or at most δ.

We refer to U and V as the “left” and “right” vertices, and to Σ1 and Σ2 as the
“left” and “right” alphabets. The left degree of an instance (resp. the right degree) is
defined naturally as the maximum degree of a left vertex (resp. of a right vertex). In
general, we will assume that all the Label-Cover instances we construct are regular
(i.e, the left (right) degree of all left (right) vertices are the same), unless explicitly
stated otherwise. In fact, in §5 we show how to “regularize” any Label-Cover
instance without altering its other parameters very much

The Label-Cover problem is often viewed as a “two-query” PCP. This is be-
cause a reduction from L to Label-Cover can be converted into a two-query PCP
verifier: the verifier expects a labeling as a proof and checks that a random edge is
satisfied by reading its two endpoints.

2.2.2. Robust PCPs. Next, we recall the notion of robust PCPs, which has
been very useful in PCP constructions. Formally defined in [BGH+06, DR06], ro-
bust PCPs have been implicit in all PCP constructions since the original proof of
the PCP Theorem [AS98, ALM+98] (especially in PCP constructions which involve
composition). The only difference between robust PCPs and regular PCPs is in the
soundness condition: while the standard soundness condition measures how often
the PCP verifier accepts a false proof, the robust soundness condition measures the
average distance between the local view of the verifier and an accepting local view.

Definition 2.3 (robust PCPs). For functions r, q,m, a, s : Z+ → Z+ and δ :
Z+ → [0, 1], a verifier V is a robust probabilistically checkable proof (robust PCP)
system for a language L with randomness complexity r, query complexity q, proof
length m, alphabet size a, decision complexity s and robust soundness error δ if V is a
probabilistic polynomial-time algorithm that behaves as follows: On input x of length
n and oracle access to a proof string π ∈ Σm(n) over the (proof) alphabet Σ where
|Σ| = a(n), V reads the input x, tosses at most r = r(n) random coins, and generates
a sequence of locations I = (i1, . . . , iq) ∈ [m]q(n) and a predicate f : Σq → {0, 1} of
decision complexity s(n), which satisfy the following properties.

Completeness: If x ∈ L then there exists π such that

Pr
(I,f)

[f(πI) = 1] = 1.

(Robust) Soundness: If x 6∈ L then for every π,

E
(I,f)

[
agr
(
πI , f

−1(1)
)]
≤ δ. (2.1)

where the distribution over (I, f) is determined by x and the random coins of V .

10 I. Dinur and P. Harsha

Robust soundness must be contrasted with soundness of standard PCP verifiers
in which (2.1) is replaced by

Pr
I,f

[f(πI) = 1] ≤ δ.

In fact, this is the only difference between the above definition and the standard
definition of a PCP system. The robust soundness states that not only does the local
view violate the local predicate f , but in fact has very little agreement with any of
the satisfying assignments of f .

Remark 2.4. For readability, our notation does not reflect the fact that I and
f depend on both x and the random coins r. When not clear from the context we
may write I(x, r) or I(r) to highlight this dependence. Note that as usual, all of the
parameters (r, q,m, |Σ| , s, δ) are functions of the input length |x| = n, but not of the
input itself. We will find it convenient to refer to the sequence of locations I = I(r) as
the local window, f as the local predicate and the proof restricted to the local window,
i.e., πI , as the local view of the proof.

2.2.3. Correspondence between Label-Cover and robust PCPs. We
now proceed to describe the correspondence between the notions of Label-Cover
and robust PCPs.

If a language L has a robust PCP, then here is a reduction from L to Label-
Cover: the set of left vertices is the set of random strings of the robust PCP, the
set of right vertices is the set of the proof locations. An edge (r, i) exists if the proof
location i is probed on random string r. The label to a left vertex r is an accepting
local view of the verifier on random string r while a label to the right vertex i is the
proof symbol in the corresponding proof location i. An edge (r, i) is consistent if the
local view is consistent with the proof symbol.

Conversely, a reduction from L to Label-Cover defines a robust PCP verifier as
follows: the verifier expects as proof a labeling of the set of right vertices, the verifier
chooses a random left vertex, queries all its neighbors and accepts iff there exists a
label to the left vertex that satisfies all the corresponding edges.

This correspondence is summarized more formally in the following lemma state-
ment. Note that this correspondence is akin to the correspondence between bipartite
graphs with left degree q and q-uniform hyper-graphs. The proof is straightforward.
One direction is proved along the lines of Fortnow, Rompel and Sipser’s result [FRS94]
that every language in MIP has a 2-prover MIP. (cf., [BGH+06, Proposition 2.14]).

Lemma 2.5 (Robust PCP ≡ Label-Cover). For every δ : Z+ → R+, and
r, q,m, a : Z+ → Z+, the following two statements are equivalent:

1. Label-Coverδ is NP-hard for instances with the following parameters:
• left degree at most q(n),
• right alphabet Σ(n) with |Σ| = a(n),
• left alphabet Σ′(n),
• size of right vertex set at most m(n), and
• size of left vertex set at most 2r(n).

2. Every L ∈ NP has a robust PCP with robust soundness error δ and the
following parameters:
• query complexity q(n),
• proof alphabet Σ(n) with |Σ| = a(n),
• maximum number of accepting local views7 |Σ′(n)|,

7This is sometimes called the free bit complexity. More precisely, |Σ′(n)| = 2fb where fb is the

Composition of low-error 2-query PCPs 11

• proof length m(n), and
• randomness complexity at most r(n).

Proof. [Proof Sketch:]

(1 → 2) : Given a reduction from L ∈ NP to Label-Coverδ, we construct a
verifier for L as follows. The verifier, on input x, computes (using the reduction) a
Label-Cover instance I = ((U, V,E),Σ,Σ′, F). The verifier expects the proof to
contain a labeling of V , and uses its random bits to select a random left vertex u ∈ U
and reads the labels of every neighbor of u. It accepts iff there exists a label for u that,
together with labels of its neighbors given by the proof, satisfies all the constraints
adjacent to u. Given a proof, i.e., a right labeling L2 : V → Σ′ which has robust
soundness error δ, then there exists a left labeling L1 : U → Σ such that the labeling
L = (L1, L2) satisfies exactly δ fraction of the edge constraints.

(2 → 1) : Given a robust verifier for L we construct a reduction from L to
Label-Cover. The reduction maps an input x to an instance I = ((U, V,E),Σ,Σ′, F)
where U has a vertex per random string of the verifier, and V has a vertex per proof
symbol. A vertex u ∈ U will be adjacent to all proof symbols that the verifier reads
when given the corresponding random string. A label a ∈ Σ will describe an entire
accepting view of the verifier, and the constraints will check consistency. Given a
labeling L = (L1, L2) of the Label-Cover instance that satisfies at least δ fraction
of the edges, it is easy to see that the proof given by L2 : V → Σ′ has robust soundness
error at least δ.

It is important to note that this is a syntactic correspondence between the notions
of Label-Cover and robust PCPs and there is no loss of parameters in going from
one framework to another. In particular, going from Label-Cover to a robust PCP
and back, one gets back the original Label-Cover instance.

To get comfortable with this correspondence, let us see how composition of two-
query PCPs (i.e., verifiers derived from Label-Cover) looks in terms of robust PCPs.
In the Label-Cover world the aim of composition is to reduce the alphabet size. (In
fact, the main issue is to reduce the left alphabet, since reducing the right alphabet is
much easier, see §5). When translating to a robust PCP, the alphabet size is the free
bit complexity. So the aim of composition for robust PCPs would be to reduce the free
bit complexity. We will actually be more stringent in our demands from composition
of robust PCPs and expect composition to reduce the query complexity which upper
bounds the free-bit complexity.

We end this section with a definition.

Definition 2.6 (Proof degree). Given a robust PCP system, we will refer to the
maximum number of local windows any index in the proof participates in, as the proof
degree, denoted by d(n). More precisely, for each i ∈ [m(n)], if we let

Ri =
{
r ∈ {0, 1}r(n)

∣∣∣ i ∈ I(r)
}
,

then d(n) = maxi |Ri|. Furthermore, if |Ri| = d(n) for all i, we will say the PCP
system is regular.

Observe that the notion of proof degree exactly corresponds to the right degree of
the Label-Cover instance according to the equivalence in Lemma 2.5. Furthermore,
the PCP system is regular iff the corresponding Label-Cover instance is right-
regular. In general, all the PCP systems (and hence Label-Cover instances) we will

free bit complexity.

12 I. Dinur and P. Harsha

be dealing with will be regular, unless explicitly stated otherwise. In fact, in §5, we
give a reduction that “regularizes” a robust PCP.

2.3. Samplers. In this section, we recall the definition of samplers that we will
later use both in the composition step and degree reduction of robust PCPs.

Definition 2.7 (Sampler). A bipartite graph G = (A,B,E) is an (α, β)-sampler
if for every S ⊂ A,

Pr
b∈B

[
|Γ(b) ∩ S|
|Γ(b)|

>
|S|
|A|

+ α

]
< β. (2.2)

Such samplers can be efficiently constructed as seen from the following remark.
Remark 2.8 ([Gol97, Section 5]). There exists a uniform algorithm that when

given as input integer n and ε > 0, constructs an (ε, ε2)-sampler graph (A,B,E) with
|A| = |B| = n such that the right degree is 4/ε4. (Such a sampler can be obtained by
“expander-neighborhood” sampling [GW97]).

3. Decodable PCPs. Consider a PCP for some language in NP. Known PCP
constructions have the property that the PCP π is an encoding of the original NP
proof. In fact, some constructions have the additional property that every bit of the
NP-proof can be locally decoded from the PCP π. We make this notion explicit, in
the form of PCP decoders and decodable PCPs. For example, consider the language
CircuitSatΣ, which consists of circuits C : Σk → {0, 1} that are satisfiable (i.e.,
there exists a string y that causes C to evaluate to true). The PCP for checking
satisfiability of an instance C of CircuitSat is typically a probabilistically checkable
encoding of a string y such that C(y) = 1. Such a y is called the NP-witness of the
fact “C ∈ CircuitSat”. A PCP verifier for the language CircuitSat would verify
that the input circuit is satisfiable, with the help of a PCP, which is typically (but not-
necessarily) an encoding of the NP-witness y. A PCP decoder for CircuitSat expects
the PCP to be an encoding of the NP witness. Like a PCP verifier, the PCP decoder
verifies with the help of the PCP that “C ∈ CircuitSat”, and furthermore decodes
the PCP back to the NP witness. Formally, the PCP decoder gets as additional input
an index j, and is supposed to either reject or return the jth symbol of the NP witness.

Definition 3.1 (PCP Decoders). A PCP decoder for CircuitSatΣ over a
proof alphabet σ is a probabilistic polynomial-time algorithm D that on input a circuit
C : Σk → {0, 1} of decision complexity n and an index j ∈ [k], tosses r = r(n) random
coins and generates (1) a sequence of q = q(n) locations I = (i1, . . . , iq) in a proof
of length m(n) and (2) a (local decoding) function f : σq → Σ ∪ {⊥} of decision
complexity at most s(n).

For readability, our notation does not reflect the fact that I and f depend on C, r
and j. When not clear from the context we may write I(C, r, j) or I(r, j) to highlight
this dependence (and similarly for f). Clearly, neither I nor f depend on the proof
string π.

We think of the PCP decoder D as representing a probabilistic oracle machine
that based on its input C, the index j and random coins queries its proof oracle
π ∈ σm for the positions in the local window I, receives the local view πI consisting
of the q symbols (πi1 , . . . , πiq) and outputs f(πI).

All of the parameters |σ| , |Σ| ,m, k, r, q, s are understood to be functions of the
input length n, and not of the input itself. We call r the randomness complexity, q
the query complexity, m the proof length, a = |σ| the proof alphabet size, and s the
decoding complexity of the PCP decoder D. We refer to Σ as the input alphabet

Composition of low-error 2-query PCPs 13

and σ as the proof alphabet of D. The proof degree of a dPCP, d, is defined to be
the maximal number of views containing a single proof symbol, when going over all
possible inputs j.

Definition 3.2 (Decodable PCPs). For functions δ : Z+ → [0, 1] and L : Z+ →
Z+, we say that a PCP decoder D is a decodable probabilistically checkable proof
(dPCP) system for CircuitSatΣ with soundness error δ and list size L if the following
completeness and soundness properties holds for every circuit C : Σk → {0, 1}:
Completeness: For any y ∈ Σk such that C(y) = 1 there exists a proof π ∈ σm, also

called a decodable PCP, such that

Pr
j,I,f

[f(πI) = yj] = 1,

where j ∈ [k] is chosen uniformly at random and I, f are distributed according
to C, j and the verifier’s random coins.

Soundness: For any π ∈ σm, there is a list of 0 ≤ ` ≤ L strings y1, . . . , y` satisfying
∀i, C(yi) = 1 such that

Pr
j,I,f

[
f(πI) /∈

{
⊥, y1

j , . . . , y
`
j

}]
≤ δ, (3.1)

Robust Soundness: We say that D is a robust dPCP system for CircuitSatΣ

with robust soundness error δ, if the soundness criterion in (3.1) can be
strengthened to the following robust soundness criterion,

E
j,I,f

[agr (πI ,bad(f))] ≤ δ,

where

bad(f) ,
{
w ∈ σq

∣∣ f(w) /∈
{
⊥, y1

j , . . . , y
`
j

}}
.

Note that the parameters δ, L are allowed to be functions of the input length n,
but not the input. As in the case of PCPs vs. robust PCPs, the only difference
between a dPCP and a robust dPCP is that the soundness condition for a dPCP is
Pr[πI ∈ bad(f)] ≤ δ while that for a robust dPCP is E[agr(πI ,bad(f))] ≤ δ.

The above definition of dPCP can be naturally extended to any pair language,
where the first part of the input should be viewed as the original input, and the second
part as the NP witness (see Appendix A). However, for the purpose of composition
it suffices to work with dPCPs for CircuitSat.

Decodable PCPs or its variants are implicit in most PCP constructions [AS03,
RS97, DFK+11, BGH+06, DR06, MR10a] and can be easily obtained by adapting the
existing PCP constructions (as we do in §6).

Decodable PCPs are closely related to the locally decode/reject codes (LDRCs),
introduced by Moshkovitz and Raz [MR10b] and can be viewed as a natural extension
of their definition. The following summarizes the salient differences and similarities
between these two objects.

1. LDRCs are a special case of dPCPs in the sense that LDRCs consider those
circuits C which check membership in a particular code (eg., Reed-Muller,
Hadamard) while dPCPs consider any predicate C. This is the main differ-
ence between LDRCs and dPCPs. However, it is to be added that [MR10b]
did not require such a general construction that works with any predicate C
as they were interested in the composition of some very specific PCPs, while
we need to work with the more general definition as we need to be able to
compose arbitrary PCP verifiers.

14 I. Dinur and P. Harsha

2. LDRCs decode a k-tuple of elements from the proof while dPCPs decode just
one symbol of the proof. However, the definition of dPCP can be extended
from decoding symbols of the proof to decoding any function of the proof
(and in particular k-tuples of the proof), as long as the set of functions to be
decoded is known in advance (see Appendix A).

We conclude this section by commenting on the relation between decodable PCPs
and locally decodable codes. A locally decodable code (see e.g. [KT00]) is a code that
has a local-decoder with the following property: if the given word is not too far from
a codeword, then every index can be locally decoded with high probability. While
decodable PCPs also allow one to potentially decode each index, the main difference
is that the guarantee is only for a random index. This is a significant difference as
there are no known polynomial sized constructions for locally decodable codes.

4. Composition Theorem. In this section, we show how to compose an outer
robust PCP verifier with an inner robust PCP decoder, such that the resulting PCP
verifier has low robust soundness error. This gives a composition theorem for two-
query PCPs simply by the equivalence between robust PCPs and two-query PCPs
(see Lemma 2.5).

Before moving to our composition theorem, let us first explain why the earlier
“natural” composition techniques [BGH+06, DR06, Sze99, RS97, AS03] did not give
the result we claim here. As described in §1.2, the straightforward way to compose
an outer robust PCP verifier V with an inner robust PCP decoder D is as follows.
The composed PCP verifier V ′ begins by simulating V on a probabilistically checkable
proof Π. It determines a set of queries into Π (a local window I), and a local predicate
f . Instead of directly querying Π and testing if f(ΠI) = 1, V ′ relies on the inner PCP
decoder D to perform this action. For this task, the inner PCP decoder D is supplied
with a dedicated proof that is supposedly an encoding of the relevant local view ΠI .
To ensure consistency (i.e. that the various dedicated proofs for D are encodings of
local views coming from a single valid PCP for V) V ′ asks D to decode a value from
the encoded local view, and compares it to the appropriate symbol in Π.

The problem is that the robust soundness error of V ′ is always at least 1/2, even
if both V and D had very small robust soundness error. The reason is that the local
view of V ′ has two distinct parts: the outer PCP part, and the inner dPCP part.
Having fixed the view in one of the two parts, it is easy to modify the second part to
make the verifier accept. Thus, by taking completely inconsistent inner dPCPs, still
the average agreement of V ′ with an accepting view (namely, the robust soundness
error) is at least 1/2, even if we allow for different weights on each part.

An alternate approach is to have V ′ check consistency by decoding the i-th symbol
Πi from two different randomly selected (encodings of) local views of Π, and avoiding
the need for Π altogether. Here too the robust soundness error is at least 1/2, but
now it is easy to correct: simply read Πi simultaneously from many different local
views, rather than just 2 ! This is the approach we describe next.

Theorem 4.1 (Composition Theorem). Suppose L has a regular8 robust PCP
verifier V with proof alphabet Σ and robust soundness error ∆, and CircuitSatΣ

has a robust PCP decoder D with input alphabet Σ, proof alphabet σ, robust soundness

8The composition theorem works even if the robust PCP is not regular as long as one works
with a suitable weighted version of PCPs and chooses the probability distribution according to these
weights instead of the uniform distribution. However, we find it easier to work with the regular case
and not worry about weights. Lemma 5.7 contains a generic reduction transforming any non-regular
PCP system into a regular one.

Composition of low-error 2-query PCPs 15

error δ and list size L. Then, L has a robust PCP verifier V ′ = V ~ D, with robust
soundness error ∆L + δ and other parameters as stated in Table 4.1. Furthermore,
if the PCP decoder D is left-regular (right-regular), then the composed verifier V ′ is
left-regular (right-regular).

Table 4.1
Parameters for Composition. All parameters in the V column are functions of n, and all

parameters in the D column are functions of S(n). For example, ∆L + δ should be read as ∆(n) ·
L(S(n) + δ(S(n))). s(equalDσ) refers to the decision complexity of checking if D symbols over the
alphabet σ are equal.

V D V ′ = V ~D
proof alphabet Σ σ σ
randomness complexity R r logM + r
query complexity Q q Dq

decision complexity S s Ds+ s(equalDσ)
proof degree D d d
proof length M m 2R ·m
robust soundness error ∆ δ ∆L + δ
list size - L -
input size n S(n) n

Before proceeding to the proof of Theorem 4.1, let us first look at the parameters
of composition in Table 4.1. The composed verifier has query complexity Dq where
D is the proof degree of the outer robust PCP verifier V and q the query complexity
of the inner decoder D. Thus, composition reduces query complexity only if the
outer proof degree D is small to begin with. However, this might not always be the
case. One of the ideas in [MR10b] was to perform a degree reduction step before the
composition, so that D becomes small. This also works in our setting. An alternative
approach, suggested by Oded Goldreich, is to introduce sampling into the composition
step (the verifier will not look at every local view containing Πi but rather at a large
enough sample of them). We next present this so-called “efficient” variant of this
composition.

Theorem 4.2 (Efficient Composition Theorem). Suppose L has a regular robust
PCP verifier V with proof alphabet Σ and robust soundness error ∆, and suppose
CircuitSatΣ has a robust PCP decoder D with input alphabet Σ, proof alphabet
σ, robust soundness error δ and list size L. Furthermore, suppose there exist (ε, ε2)-
samplers as described in Remark 2.8. Then, L has a robust PCP verifier V ′ = V ~εD,
with robust soundness error ∆L+4Lε+δ and other parameters as stated in Table 4.2.
Furthermore, if the PCP decoder D is regular, then so is the composed verifier V ′.

Table 4.2
Parameters for Efficient Composition.

V D V ′ = V ~ε D
proof alphabet Σ σ σ
randomness complexity R r logM + r + logD
query complexity Q q 4/ε4 · q
decision complexity S s 4s/ε4 + s(equalDσ)
proof degree D d d
proof length M m 2R ·m
robust soundness error ∆ δ ∆L + 4Lε+ δ
list size - L -
input size n S(n) n

16 I. Dinur and P. Harsha

Proof. [Proof of Theorem 4.1] The proof π ∈ σ2R·m of the composed verifier V ′

is interpreted as a concatenation of the proofs π(R) for each R ∈ {0, 1}R. V ′ acts as
follows:

1. Choose i ∈ [M] uniformly at random (recall that M is the length of the
outer PCP). Let R1, . . . , RD be all the random strings of the outer verifier
V that generate local windows I1, . . . , ID respectively such that i ∈ Ik for
every k = 1, . . . , D. Denote by f1, . . . , fD : ΣQ → {0, 1} the corresponding
local predicates computed by V and by j1, . . . , jD ∈ [Q] the corresponding
re-indexing of i within each Ik (i.e., jk = indexi∈Ik as defined in §2.1).

2. Choose r ∈ {0, 1}r uniformly at random. For each k = 1, . . . , D run the inner
PCP decoder D on input fk, index jk, random coins r, and proof π(Rk). Let
(Jk, gk) be the local window and local predicate computed by D.

3. Accept if and only if

g1(π(R1)J1) = · · · = gD(π(RD)JD) 6= ⊥.

In other words the local window is I ′ = ∪Dk=1Jk and the local predicate
f ′ : σDq → {0, 1} is defined by

f ′(w1, . . . , wD) =

 1, g1(w1) = · · · = gD(wD) 6= ⊥,

0, Otherwise.

The claims about V ′’s parameters (randomness, query, decision complexities, proof
length and proof degree) can be verified by inspection. For example, the proof degree
can be obtained by counting the number of edges in the corresponding label cover
graph in two ways. Thus, we only need to check completeness and soundness.

Completeness: Suppose x ∈ L. Then, by completeness of V , there exists a proof
Π causing V to accept with probability 1. In other words, for every R ∈ {0, 1}R and
corresponding (I, f) computed by V , we have f(ΠI) = 1. We now invoke the inner
PCP decoder D on the (input) circuit f(R). By completeness of D, there exists a proof
π(R) which encodes ΠI , causing D to always accept and output the correct symbol of
Π. More specifically for each i and for every r ∈ {0, 1}r, the verifier computes J and
g such that g(π(R)J) = Πi. Since all the proofs π(R) of the various inner verifiers
encode different local views of the same outer proof Π, we have that the local view of
the composed verifier satisfies the computed predicate f ′ with probability 1.

Soundness: Suppose that x /∈ L. To prove soundness of the composed verifier V ′,
we need to show that for all proofs π,

E
(I′,f ′)∼V ′

[agr
(
πI′ , (f

′)−1(1)
)
] ≤ δ + L ·∆.

Assume (for the purpose of contradiction) that this is not the case. In other words,

there exists a proof π ∈ σm2R

, such that E(I′,f ′)∼V ′ [agr
(
πI′ , (f

′)−1(1)
)
] > δ + L ·

∆. We will then show that there exists a proof Π for the outer verifier V such
that E(I,f)∼V

[
agr
(
ΠI , f

−1(1)
)]
> ∆, contradicting the soundness claim of the outer

verifier V .
Let us write π = (π(R))R∈{0,1}R . Fix some R ∈ {0, 1}R, and let (I, f) be the

local window and local predicate generated by the outer verifier V on input x and
randomness R. Consider the inner PCP decoder D when run on the input f and the
proof π(R).

Composition of low-error 2-query PCPs 17

It follows from the soundness of D, that for each π(R) there exist a set

list(R) = {y1, y2, . . . , y`} ⊆ f−1(1),

with 0 ≤ ` ≤ L, of supposed “plausible” decodings of π(R).
Already at this point we can define a (randomized) proof Π for the outer verifier

that will achieve high average agreement. Indeed for random string R of the outer
verifier select randomly one y(R) ∈ list(R). For each index i define Πi by selecting the
most popular value y(R)indexi∈I where R ranges over all random strings whose view
contains i. A priory, each value may occur with small probability ∼ 1/ |Σ|. However,
we rely on the soundness of the composed verifier to show that that is not the case,
and hence we can lower bound the average success on Π.

Let us recall the following notation from the description of V ′. The random string
of V ′ is (i, r) ∈ [M] × {0, 1}r. The pairs (I1, f1), . . . , (ID, fD) are such that i ∈ Ik
for all 1 ≤ k ≤ D and they are generated by the outer verifier on random strings
R1, . . . , RD ∈ {0, 1}R respectively. Furthermore, recall that {(Jk, gk)}k∈[D] were the
pairs generated by D in step 2, i.e., on input fk, random string r, and index jk where
jk is the re-indexing of i within Ik (i.e., jk = indexi∈Ik). Finally, we denoted by
(I ′, f ′) the local view and local predicate of V ′.

We will view all of Ik, fk, Rk, Jk, gk, f
′, I ′ as random variables over the probability

space [M]× {0, 1}r (i.e., that depend on i, r).
The following captures the set of accepting local views of V ′:

(f ′)−1(1) =
{
w1w2 . . . wD ∈ σqD

∣∣ g1(w1) = · · · = gD(wD) 6= ⊥
}
.

Let w = w1w2 · · ·wD ∈ (f ′)−1(1) be an accepting view that is closest (in Ham-
ming distance) to πI′ (breaking ties lexicographically) and α the corresponding de-
coded value, i.e., α = g1(w1) = · · · = gD(wD). Note that both w and α are random
variables as well (i.e., w = w(i, r) and α = α(i, r)). By assumption,

E
i,r

[agr(πI′ , w)] > δ + L∆.

Recall that I ′ = ∪Dk=1Jk so

agr(πI′ , w) = E
k∈[D]

[agr(π(Rk)Jk , wk)] .

Hence,

E
i,r

E
k∈[D]

[agr(π(Rk)Jk , wk)] > δ + L∆. (4.1)

We will split the above expression according to whether or not α is “consistent” with
the list list(Rk). For each k ∈ [D], let ck = ck(i, r) be an indicator random variable
defined by

ck =

 1, α ∈ list(Rk)jk ,

0, otherwise.

Surely,

E
i,r,k

[agr(π(Rk)Jk , wk)] = E
i,r,k

[agr(π(Rk)Jk , wk) · ck] + E
i,r,k

[agr(π(Rk)Jk , wk) · (1− ck)]

≤ E
i,r,k

[ck] + E
i,r,k

[agr(π(Rk)Jk , wk) · (1− ck)]. (4.2)

18 I. Dinur and P. Harsha

where the last inequality follows since agr(·) ≤ 1. We will now upper bound the second
quantity in the above expression by δ, the robust soundness error of the inner PCP
decoder D. For each outer random string R, the soundness of the inner PCP decoder
states that Er,j [agr(π(R)J ,bad(g))] ≤ δ, where bad(g) = {u | g(u) /∈ {⊥} ∪ list(R)j}.
Applying this to the outer random string Rk, we have

E
r,j

[agr(π(Rk)Jk ,bad(gk))] ≤ δ,

and by regularity of the outer verifier V , also,

E
i,r,k

[agr(π(Rk)Jk ,bad(gk))] ≤ δ.

Now, whenever ck = 0, we have by definition that α /∈ list(Rk)jk whereas gk(wk) =
α 6= ⊥ which implies wk ∈ bad(gk). Hence we have

E
i,r,k

[agr(π(Rk)Jk , wk) · (1− ck)] ≤ E
i,r,k

[agr(π(Rk)Jk ,bad(gk))] ≤ δ.

Combining the above inequality with (4.2) and (4.1), we have

E
i,r,k

[ck] > L∆.

Or equivalently,

E
r

Pr
i,k

[α ∈ list(Rk)jk] > L∆.

Recall that α = α(i, r) was defined independently of k, and hence of Rk and yet,
the above inequality shows that often α is consistent with the list-decoding list(Rk) of
the proof π(Rk). This reveals that the soundness assumption of the composed verifier
translates into an underlying consistency among the various list(Rk)’s.

Now recall our definition of Π and imagine making the random choices for Π at
this point. For each random string Rk we chose y(Rk) to be a random member of
list(Rk), so the above inequality becomes

E
r

Pr
i,k

[α = y(Rk)jk] > ∆.

But by definition Πi is chosen to be the most popular value out of {y(Rk)jk}k=1,...,D.
So we get

Pr
i,k

[Πi = y(Rk)jk] > ∆.

Changing the order of summation (and relying on the regularity of the outer verifier)
we get

E
R

Pr
i

[Πi = y(R)(indexi∈I)] > ∆.

but the left hand side expression is no other than ER[agr(ΠI , y(R))] which is at most
ER[agr(ΠI , f

−1(1))] and we are done.
We now proceed to the proof of the efficient variant of composition. In the com-

position as described above, the composed verifier ran all the D inner PCP decoders

Composition of low-error 2-query PCPs 19

corresponding to the D different outer windows that involved the index i. This re-
sulted in the large query complexity of Dq for the composed verifier. However, it
suffices if we ran a small random sample of the inner decoders instead of all of them
and this is what the efficient composed verifier described below does.

Proof. [Proof of Theorem 4.2] The proof π ∈ σ2R·m of the efficient composed
verifier V ′ is, as before, interpreted as a concatenation of the proofs π(R) for each
R ∈ {0, 1}R. The efficient composed verifier V ′ will use samplers (see as described in
Definition 2.7 and Remark 2.8) to choose a random sample of the D different inner
PCP decoders. Verifier V ′ acts as follows:

1. Choose i ∈ [M] uniformly at random (recall that M is the length of the
outer PCP). Let R1, . . . , RD be all the random strings of the outer verifier V
that generate local windows I1, . . . , ID respectively such that i ∈ Ik for every
k = 1, . . . , D.
Construct a (ε, ε2)-sampler ([D], [D], E) with D vertices on either side (see
Remark 2.8). Choose a random s ∈ [D] and let Γ(s) = {k1, . . . , kt} ⊆ [D] be
the set of neighbors of s in the sampler graph.
Let Rk1 , . . . , Rkt be the corresponding random strings of V , let Ik1 , . . . , Ikt be
the corresponding local views all containing i. Denote by f1, . . . , ft : ΣQ →
{0, 1} the corresponding local predicates computed by V and by j1, . . . , jt ∈
[Q] the corresponding re-indexing of i within each Ik` (i.e., j` = indexi∈Ik` as
defined in §2.1).
[Note: The sampling is the only difference between this verifier and the verifier
of Theorem 4.1.]

2. Choose r ∈ {0, 1}r uniformly at random. For each ` = 1, . . . , t run the inner
PCP decoder D on input f`, index j`, random coins r, and proof π(Rk`). Let
(J`, g`) be the local window and local predicate computed by D.

3. Accept if and only if

g1(π(Rk1)J1) = · · · = gt(π(Rkt)Jt) 6= ⊥.

In other words the local window is I ′ = ∪t`=1J` and the local predicate f ′ :
σtq → {0, 1} is defined by

f ′(w1, . . . , wt) =

 1, g1(w1) = · · · = gt(wt) 6= ⊥,

0, Otherwise.

This verifier is analyzed by simply observing that it can be alternatively obtained in
the following fashion: first, perform degree reduction on the outer PCP verifier V to
reduce its proof degree from D to 4/ε4 using the (ε, ε2)-sampler above (as described
in §5.1) and then compose this degree reduced outer PCP verifier with the inner PCP
decoder. It is an easy exercise to check that this verifier has parameters as described
in Table 4.2 (simply plug in for the outer verifier a verifier with proof length DM ,
proof degree 4/ε4, and robust soundness error ∆ + 4ε and the remaining parameters
as before).

5. Transformations on Label-Cover. In this section, we describe generic
transformations on Label-Cover (or in its equivalent formulation, robust PCPs):
degree reduction, alphabet reduction and regularization. To the best of our knowledge
the alphabet reduction is new, and may be of independent interest. (The method for
proving the regularization is due to [MR10b])

20 I. Dinur and P. Harsha

5.1. Proof Degree Reduction. In this section, we show how we can lower the
proof degree of a robust PCP at a very nominal cost to the other parameters. To this
end, we use samplers (see §2.3). This proof is along the lines of degree reduction of
LDRCs due to Moshkovitz and Raz [MR10b], who used expanders instead.

We state (and prove) degree reduction in the language of the Label-Cover
problem (as opposed to that of robust PCPs) as this is a more natural setting (in our
view) to perform degree reduction.

Theorem 5.1 (degree reduction). There exists a polynomial time reduction
transforming instances I = (G = (U, V,E),Σ1,Σ2, F) of Label-Coverδ of aver-
age right degree D to right-regular instances I ′ = (G′ = (U, V ′, E′),Σ1,Σ2, F

′) of
Label-Coverδ+4µ of right degree d = 4/µ4, such that |V ′| = D |V | = |E|.

Proof. Let I = (G = (U, V,E),Σ1,Σ2, F) be the input instance with average right
degree D. For any vertex v ∈ V , let Dv denote the degree of v and Γ(v) the set of
neighbors of v in U .

We construct the new instance I ′ = (G′ = (U ′ = U, V ′, E′),Σ1,Σ2, F
′) as follows.

Each right vertex v ∈ V will be replaced by a set [v] := {v} × {1, . . . , Dv} of Dv

vertices. We set V ′ = ∪v[v]. Clearly |V ′| = D |V |.
The edges E′ and constraints F ′ are specified as follows. Let Hv = (A,B,E)

be an (µ, µ2)−sampler graph with |A| = |B| = Dv, as guaranteed by Remark 2.8.
We place a copy of Hv between the neighbors of v, Γ(v) ⊂ U ′ = U and the cloud of
vertices [v] ⊂ V ′ by identifying Γ(v) with A and [v] with B. Finally, the constraints
F ′ are as follows. An edge (u, (v, i)) in the new instance will carry the same constraint
as (u, v) (i.e., f(u,(v,i)) = f(u,v)).

Thus V ′ is the disjoint union of [v] for all v ∈ V , and E′ the union of the edges
of the graphs Hv for all v, placed as described above.

The output instance I ′ = (G′,Σ1,Σ2, F
′), by definition, is right regular with right

degree d = 4/µ4. Furthermore, it is easy to check completeness: If L = (L1 : U →
Σ1, L2 : V → Σ2) is a labeling of vertices in G that satisfies all the edges in E, then
the labeling L′ = (L1 : U → Σ1, L

′
2 : V ′ → Σ2) given by L′2(v, i) = L2(v) satisfies all

the edges in E′. Thus, instances of value 1 are transformed to instances of value 1.
For soundness, we assume that the input instance I has value at most δ, and

prove that the instance I ′ has value at most δ+ 4µ. Let L′ = (L′1, L
′
2) be any labeling

for the vertices of G′ (i.e., L′1 : U → Σ1 and L′2 : V ′ → Σ2). To estimate the value
of L′ we first define a (randomized) labeling L for the input instance I as follows: for
each u ∈ U , set L1(u) = L′1(u) and for each v ∈ V , choose i ∈ [Dv] randomly and set
L2(v) = L′2(v, i).

For each v, the expected fraction of edges touching v that are satisfied by this
labeling is equal to

δv :=
∑
σ∈Σ2

Pr[L(v) = σ] · Pr
u∈Γ(v)

[f(u,v)(L(u)) = σ],

where the first probability is over the randomized choices in defining L. The expected
number of satisfied edges under L is

∑
vDvδv, and by our assumption∑

v

Dvδv ≤ δ |E| . (5.1)

Fix any vertex v ∈ V and focus on A = Γ(v) and B = [v]. By construction, the edges
in G′ that go from A to B are the edges of the sampler graph Hv.

Composition of low-error 2-query PCPs 21

Claim 5.2. The number of edges in Hv that are satisfied by L′ is at most (δv +
4µ)dDv.

Summing over all v this implies that the total number of edges in E′ satisfied
under L′ is at most∑

v

(δv + 4µ)dDv = d
∑
v

Dvδv + 4dµ
∑
v

Dv ≤ δ |E| d+ 4µ |E′| = (δ + 4µ) |E′| ,

where the inequality follows from (5.1). This completes the proof of soundness and
hence the proof of the theorem (modulo the proof of the claim).

Proof. [Proof of Claim 5.2] Let B(σ) be the set of vertices assigned σ by L′2. Let
A(σ) denote the set of u ∈ A that are assigned by L′1 a value that is compatible with
assigning σ to v. In other words, such that f(u,v)(L(u)) = σ.

We now bunch together the A(σ)’s that are smaller than µ |A| as follows. Greed-
ily partition Σ2 into disjoint sets S1, S2, . . . such that the corresponding sets A(Si) =
∪σ∈SiA(σ) are larger than µ |A|, but such that if |A(σ)| ≥ µ |A| then {σ} is a (sin-
gleton) member of the partition. It is easy to create such a partition, such that all
non-singleton sets have size at most 2µ |A|. Such a partition cannot contain more
than 1/µ sets.

For each B(Si) ⊂ B let B∗i be the set of “bad” sample sets, i.e., b ∈ B∗i iff

|Γ(b) ∩A(Si)|
Γ(b)

>
|A(Si)|
|A|

+ µ.

By the sampler property (2.2) the density of B∗i is at most µ2 for each i separately.
Thus, the fraction of vertices in B∗ = ∪B∗i is at most µ2 · 1

µ = µ.

For short, denote Ai = A(Si) and also Bi = B(Si) = ∪σ∈SiB(σ). For every i,

E(Ai, Bi) ≤ |B∗i | d+ |Bi| · d ·
(
|Ai|
Dv

+ µ

)
.

Summing over all i and using the fact that
∑
|B∗i | = |B∗| ≤ µDv, we get

∑
i

E(Ai, Bi) ≤ dDv ·

(
µ+ µ+

∑
i

(
|Ai| |Bi|
D2
v

))
.

Now the left hand side upper bounds the number of edges in Hv that are satisfied by
the labelings L′ = (L′1, L

′
2). On the right, note that either |Ai| ≤ µ |A| or Ai = A(σ)

for some σ. Thus, we can bound∑
i

(
|Ai| |Bi|
D2
v

)
≤ 2µ+ δv.

(The term 2µ takes care of all i’s for which |Ai| /Dv ≤ 2µ, and the term δv takes care
of all Ai’s that are singletons).

Altogether we get

1

dDv

∑
i

E(Ai, Bi) ≤ 4µ+ δv.

It remains to observe that the left hand side upper bounds the fraction of edges in
Hv that are satisfied under L′. If we average these inequalities for the various v’s,

22 I. Dinur and P. Harsha

weighting them according to Dv (the degree of v in G), we will get that the fraction
of edges satisfied by L′ is upper bounded by 4µ+ δ:

1

|E′|
·
∑
v

Dv ·
1

dDv

∑
i

E(Ai, Bi) ≤ 4µ+
1

|E′|
∑
v

Dvδv ≤ 4µ+ δ.

5.2. Alphabet Reduction. In this section, we show how to reduce the proof
alphabet of the robust PCP at a nominal cost to other parameters. First we need
some preliminaries from coding theory.

A mapping C : Σ → σk is called a code with minimum relative distance 1 − δ if
for every a 6= b ∈ Σ the strings C(a) and C(b) differ in at least (1− δ)k coordinates.

Fact 5.3. Suppose C ⊆ σk is a code with relative distance at least 1 − δ and
η > 2

√
δ. Then, there are at most 2/η codewords in C that agree with a given word w

on at least η fraction of the coordinates.
Proof. Suppose there exist a word w and a list of l = b2/ηc + 1 codewords in C

that agree with w on at least η fraction of the locations. Then, by inclusion exclusion,

Pr
i

[∃c ∈ list, wi = ci] ≥
∑
c∈list

Pr
i

[wi = ci]−
∑

c1 6=c2∈list

Pr
i

[wi = (c1)i = (c2)i] ≥ lη−
(
l

2

)
δ.

Since η > 2
√
δ, the above expression is greater than 1 for every l ∈ [2/η, 2/η+ 1] and

in particular for l = b2/ηc+ 1, which is a contradiction.
Remark 5.4. For every 0 < δ < 1 and alphabet Σ, there exists a code C : Σ→ σk

with relative distance 1− δ where |σ| = O(1/δ2) and k = O(log |Σ|/δ2).
Such codes can be constructed by concatenating the following two codes. As outer

codes, we take the rate-optimal codes of [ABN+92] with relative distance 1− δ/2, rate
Ω(δ) and alphabet size 2O(1/δ). As inner codes, we take Reed-Solomon codes with
relative distance 1− δ/2, rate Ω(δ), and alphabet O(1/δ2).

Theorem 5.5 (alphabet reduction). Suppose C : Σ→ σk is a code with (relative)
distance 1 − η3 for some η < 1/4. Then there exists a polynomial time reduction
transforming instances I = (G = (U, V,E),Σ′,Σ, F) of Label-Coverδ to instances
I ′ = (G′ = (U, V × [k], E′),Σ, σ, F ′) of Label-Coverδ+3η.

Proof. The reductions maps instances I = (G = (U, V,E),Σ′,Σ, F) to instances
I ′ = (G′ = (U, V ×[k], E′),Σ, σ, F ′) where the set of edges E′ and the set of projections
F ′ are defined as follows: E′ = {(u, (v, i)) | (u, v) ∈ E, i ∈ [k]} and for each e =
(u, (v, i)) ∈ E, the function f ′e : Σ′ → σ is defined as f ′e(α) = C(f(u,v)(α))i.

Completeness is easy as instances of value 1 are mapped to instances of value 1.
We will prove soundness by showing that value(I ′) ≤ value(I) + 3η. To this end, let
Π′ = (π1 : U → Σ′, π′2 : V × [k] → σ) be any labeling of the target instance I ′. For
each v ∈ V and β ∈ Σ, define δv(β) as follows:

δv(β) = Pr
u∈Γ(v)

[
f(u,v)(π1(u)) = β

]
.

It can be easily checked that the fraction of edges satisfied by the labeling Π′ is
Ev∈V [δ′v] where δ′v is the following expression:

δ′v =
∑
β∈Σ

δv(β) · Pr
i

[π′2(v, i) = C(β)i] .

Composition of low-error 2-query PCPs 23

Now, define a labeling Π = (π1 : U → Σ′, π2 : V → Σ) for the instance I by taking the
same π1 and setting π2(v) = argmaxβ δv(β). Clearly, the expected fraction of edges
satisfied by Π is Ev∈V [δv] where δv = maxβ δv(β).

Since Π is a labeling of I, we have E[δv] ≤ value(I). Thus, to show value(I ′) ≤
value(I) + 3η, it suffices to show that for each v ∈ V , we have δ′v ≤ δv + 3η. Fix a
vertex v ∈ V . Define list(v) = {β ∈ Σ | Pri[π

′
2(v, i) = C(β)i] ≥ η}. From Fact 5.3, we

have that l = |list(v)| ≤ 2/η since η > 2η3/2 for η < 1/4. We now, have

δ′v =
∑

β∈list(v)

δv(β) · Pr
i

[π′2(v, i) = C(β)i] +
∑

β/∈list(v)

δv(β) · Pr
i

[π′2(v, i) = C(β)i]

<

(
max

β∈list(v)
δv(β)

)
·
∑

β∈list(v)

Pr
i

[π′2(v, i) = C(β)i] +

η · ∑
β/∈list(v)

δv(β)

≤

δv · ∑
β∈list(v)

Pr
i

[π′2(v, i) = C(β)i]

+ η

≤ δv ·

(
Pr [∃β ∈ list(v), π′2(v, i) = C(β)i] +

∑
β1 6=β2∈list(v)

Pr [π′2(v, i) = C(β1)i = C(β2)i]

+ η

≤ δv ·

1 +
∑

β1 6=β2∈list(v)

Pr [C(β1)i = C(β2)i]

+ η

≤ δv +

(
l

2

)
η3 + η

≤ δv + 3η.

The inequality in the third line is due to the fact
∑
β δv(β) = 1, while the inequal-

ity in the fourth line is due to the principle of inclusion-exclusion: Pr[∃β,A(β)] ≥∑
β Pr[A(β)] −

∑
β1 6=β2

Pr[A(β1) ∩ A(β2)]. The inequality in the sixth line follows

from the fact that the distance of the code C is at least 1 − η3 and the the last line
follows from l ≤ 2/η. Thus, proved.

For the sake of convenience, we rewrite the above theorem in terms of robust
PCPs.

Lemma 5.6 (alphabet reduced robust PCP). There exists a constant C > 0 such
that for all ε : Z+ → [0, 1], the following holds. Suppose L has a robust PCP Verifier
V with randomness complexity r, query complexity q, proof length m, proof degree d,
robust soundness error δ over a proof alphabet Σ. Then, L has a alphabet reduced
robust PCP verifier, which we shall denote by redε(V) with

• randomness complexity r,
• query complexity Cq log |Σ|/ε6,
• proof length Cm log |Σ|/ε6,
• proof degree d,
• proof alphabet σ of size at most C/ε6,
• and robust soundness error δ + ε.

This lemma is obtained by plugging a code C : Σ→ σk with distance 1− (ε/3)3

24 I. Dinur and P. Harsha

where |σ| = O(1/ε6) and k = O(log |Σ|/ε6) (guaranteed to exist by Remark 5.4) into
Theorem 5.5.

5.3. Regularizing a Label Cover Instance. In this section, we show how to
regularize a given Label-Cover instance. Since the degree reduction transformation
from §5.1 makes the graph right-regular, it can be used to make a label cover regular
on both sides. Given a Label-Cover instance I = ((U, V,E),Σ′,Σ, F) with |U | =
n, |V | = m, average left degree DA and average right degree DB , we perform the
following steps:

1. Degree reduction to make the graph right-regular, with right degree d = 4/µ4.
2. Flip sides: This is the only step not already described above. It amounts

to mapping the right-d-regular instance I = ((U, V,E),Σ′,Σ, F) to I =
((V,U,E), (Σ′)d,Σ′, F ′). Note that the underlying graph is almost unchanged,
merely U and V are swapped. The constraints F ′ are as follows. The value
(a1, . . . , ad) ∈ (Σ′)d assigned to a vertex v is interpreted as an assignment to
all of its neighbors in the original instance. The constraint on an edge (v, u)
checks that there is some b ∈ Σ that, together with (a1, . . . , ad) would have
satisfied the edges (v, u1), . . . , (v, ud) coming out of v. It also checks that the
value actually given to u is consistent with the appropriate ai. Soundness and
completeness are straightforward. At the end of this operation, the instance
is left-regular with left degree d and the average right degree is the earlier
average left degree DAd.

3. Degree reduction to make the graph right-regular, with right degree d = 4/µ4.
4. Alphabet reduction to reduce alphabet Σ′ to σ.

The evolution of the parameters over the four steps is summarized in Table 5.1.

Table 5.1
Evolution of parameters. The table describes the evolution of parameters through the four steps:

degree reduction, flipping sides, degree reduction, and alphabet reduction. An asterisk (*) indicates
that the corresponding instance is not necessarily regular (right or left-regular as the case may be)
and the quantity mentioned is the average degree.

Label-Cover (robust PCPs) I degree flip degree alphabet
(→ d) (→ d) (→ σ)

left vertices (randomness) n n mDB mDB mDB
right vertices (proof length) m mDB n nDAd nDAdk
left degree (query complexity) DA * DAd * d d2 d2k
right degree (proof degree) DB * d DAd * d d
left alphabet (# accepting conf.) Σ′ Σ′ (Σ′)d (Σ′)d (Σ′)d

right alphabet (proof alphabet) Σ Σ Σ′ Σ′ σ
soundness error (rob. soundness error) δ δ + 4µ δ + 4µ δ + 8µ δ + 8µ+ 3η

The following lemma summarizes these parameter choices. For the degree re-
duction, we plug in µ = ε/11 and use the (µ, µ2)-samplers from Remark 2.8. For
the alphabet reduction, we use the codes mentioned in Remark 5.4, with η = ε/11,
distance 1−O(ε3), |σ| = O(1/ε6) and k = O(1/ε6) · log |Σ′| ≤ O(1/ε6) · q log |Σ|.

Lemma 5.7 (regularized robust PCP). There exists a constant C > 0 such that
for all ε : Z+ → [0, 1], the following holds. Suppose L has a robust PCP Verifier
V with randomness complexity r, query complexity q, proof length m, average proof
degree d, robust soundness error δ over a proof alphabet Σ. Then, L has a regular
reduced robust PCP verifier, which we shall denote by regularε(V) with

• randomness complexity logm+ log d,

Composition of low-error 2-query PCPs 25

• query complexity Cq log |Σ|/ε14,
• proof length Cq22r log |Σ|/ε10,
• proof degree C/ε4,
• proof alphabet σ of size at most C/ε6,
• and robust soundness error δ + ε.

6. Proof of Result of [MR10b]. In this section, we give our proof for the
result of [MR10b], namely Theorem 1.3. We first give a more formal statement of this
theorem, both in the language of Label-Cover as well as robust PCPs.

Theorem 6.1 (Formal version of Theorem 1.3). There exists constants c > 0

and 0 < β < 1, such that for every function 1 < g(n) ≤ 2O(logβ n), the following
(equivalent) statements hold:

• There exists an alphabet Σ of size exp(g(n)c) such that Label-Cover1/g(n)

over Σ is NP-hard. Furthermore, the size of the Label-Cover instance

produced by this reduction is at most n · 2O(logβ n) · g(n)c.
• CircuitSat has a robust PCP verifier with robust soundness error 1/g(n),

query complexity g(n)c, randomness complexity log n + O(logβ n), and proof
length n1+o(1).

Theorem 6.1 is slightly stronger than the version (Theorem 1.3) stated in the

introduction in the sense that it works for the range 1 < g(n) ≤ 2O(logβ n) and not
just 1 < g(n) ≤ polylogn as indicated in the introduction. This stronger version is
true both of our proof as well as that of [MR10b].

We construct the robust PCP verifier stated in the theorem by repeatedly compos-
ing two building blocks, both based on the “Manifold-vs.-Point” PCP (Theorem 1.2).
We describe the building blocks next, and prove the theorem in the following section.
The equivalent Label-Cover formulation follows from the equivalence lemma 2.5.

Before we proceed to the proof of the theorem, we mention a couple of remarks
regarding the parameters in this theorem.

Remark 6.2.

(i) As discussed in the introduction, the relation between the soundness error
δ = 1/g(n) and alphabet size |Σ| = exp(poly(g(n))) in the Label-Cover instance
is exponential. In comparison, a polynomial relation is achievable, for example, for
PCPs with O(1) queries, or for two-query PCPs via Raz’s parallel repetition theorem.
It is interesting to study this issue further.

(ii) Although the verifier is randomness-efficient, still, the relation between the
randomness complexity and the soundness error does not seem “optimal”. One could
hope for proof length of n · poly(g(n)), which comes closer to the following easy lower
bound of n · Ω(g(n)):
Claim 6.3. If Label-Coverδ is NP-hard, then the produced instance size must be
at least O(n/δ) where n is the size of the shortest NP -witness for CircuitSat.
The claim holds because if D is the average right degree, it is easy to see that it is
always possible to satisfy O(1/D) fraction of edges (one neighbor per v ∈ V), so the
proof degree is at least Ω(1/δ). On the other hand, the number of right vertices which
comprises the PCP, which being a NP-witness itself, is of size at least n (Note if
NP = P , then n = 0). Thus, the total number of edges, which is nD is at least
Ω(n/δ).
We wonder whether a result of n · poly(g(n)) is attainable.

6.1. Building Blocks. The two building blocks, we need for our construction,
are a robust PCP and a decodable PCP. Both are constructed from variants of the

26 I. Dinur and P. Harsha

‘Manifold-vs.-Point’ PCP of Theorem 1.2.
Theorem 6.4 (Robust PCP). There exist constants b0, b1, b2, b3 > 0 and 0 <

β < 1 such that for ε = 1/2b0 logβ n, CircuitSat has a robust verifier with robust
soundness error ε, query complexity 1/εb1 , proof length n·1/εb2 randomness complexity
log n+ b2 log 1

ε , and proof alphabet size at most 1/εb3 .
Theorem 6.5 (dPCP). There exist constants a1, a2, α, γ > 0 such that for every

δ ≥ n−α and input alphabet Σ of size at most nγ , CircuitSatΣ has a robust decodable
PCP system with robust soundness error δ and list size L ≤ 2/δ, query complexity n1/8,
proof alphabet σ of size nγ , proof length na1 and randomness complexity a2 log n.

Observe that among the two building blocks, only the robust PCP needs to be,
and is, randomness efficient (it has randomness complexity log n + b2 log 1/ε) while
the dPCP has randomness complexity a2 log n.

The (outer) robust PCP construction (Theorem 6.4) is folklore and is formally
given in [MR10b]. The (inner) dPCP construction (Theorem 6.5) is more subtle and
is obtained using a combination of several known results. It is implicit in the work
of Moshkovitz and Raz [MR10b]. More recently, there have been alternate, fully
“combinatorial” constructions of the dPCP, stated in Theorem 6.5, due to Dinur and
Meir [DM11]. Dinur and Meir, also give a “combinatorial” construction of the (outer)
robust PCP, however this construction is not randomness efficient. One could plugin
these constructions and obtain the 2-query PCP result of [MR10b] as outlined in §6.2.
For the sake of completeness, we give a sketch of the “algebraic” construction of the
robust PCP and dPCP, along the lines of Moshkovitz and Raz [MR10b].

6.1.1. The outer (robust) PCP verifier. The (randomness-efficient) robust
PCP construction follows from a combination of known results. We do not provide
a complete proof of this theorem, rather an outline of how it is constructed (with
pointers to the appropriate known results).

1. Basic low-error PCP: Construct a PCP verifier based on the low degree ex-
tension over a field F and the sum-check protocol (as done in [AS98, ALM+98,
RS97, AS03]). We only need the “basic part” of the construction, i.e. without
performing composition at all. A randomness efficient version of this PCP is
given in [MR10a].
At this point, the proof oracle has three parts. A “points table” describing a
function f : Fm → F supposedly of low degree, a “planes table”, supposedly
describing the restriction of f to affine planes, and a “curves” table suppos-
edly describing the restriction of f to certain degree d curves. We assume
that each of the curves tables gives only those restrictions that can arise as
restrictions of legal encoding of NP witnesses. Informally, each curve arises
from some local constraint and the curves table gives only those restrictions
that satisfy the local constraint corresponding to the curve being queried.
The soundness of the verifier says that for every ε ≥ 1/ |F|γ and ` = 2/ε the
following holds (where γ > 0 is some absolute constant).
Soundness: For every function f : Fm → F, there exists a list (possibly
empty) of low degree functions P 1, . . . , P ` : Fm → F such that each P i is
an honest encoding of a legal NP witness for the original CircuitSat. In
addition, the probability that V accepts even though its queries (point, plane,
or curve) disagree with the list P 1, . . . , P ` is at most ε. (In other words, except
with probability ε, V either rejects or accepts values that are consistent with
a short list of encodings of valid NP witnesses).

2. Manifold-vs.-Point: As described in [MR10b], the plane and the curve

Composition of low-error 2-query PCPs 27

queries can be combined into one “manifold” query (where the manifold is
the O(1) dimensional manifold containing both the curve and the plane).
More precisely, if P denotes the set of planes and Γ the set of curves, then
the set of manifolds, denoted by Ω, is obtained as follows:

Ω = {span(P, γ) | γ ∈ Γ, P plane} ,

where

span(P, γ) = {t1x+ t2y | x ∈ P, y ∈ γ, t1, t2 ∈ F} .

Now, the planes and curves tables are replaced by a single manifold table A,
that supposedly describes the restriction of the function f to the manifolds
in Ω. As in the case of the curves table, the manifold table gives only those
restrictions that satisfy the local constraints corresponding to the curve from
which the manifold was constructed.
The manifold-vs.-point verifier proceeds as follows: it chooses a random man-
ifold ω ∈ Ω and a random point in x ∈ ω and accepts iff A(ω)(x) = f(x).
The soundness of this manifold-vs.-point verifier says that for every ε ≥
1/ |F|γ and ` = 2/ε the following holds (where γ > 0 is some absolute con-
stant).
Soundness: For every function f : Fm → F, there exists a list (possibly
empty) of low degree functions P 1, . . . , P ` : Fm → F such that each P i

is an honest encoding of a legal NP witness for the original CircuitSat.
Furthermore,

Pr
ω∈Ω,x∈ω

[
A(ω)(x) = f(x) and ∀i ∈ [`],A(ω) 6≡ P i|ω

]
≤ ε.

In other words, except with probability ε, if the manifold-vs.-point verifier
accepts then the answer of the manifolds table is consistent with a short list
of encodings of valid NP witnesses.
The soundness claim described above is stronger than Theorem 1.2, however
all most all known proofs of Theorem 1.2 proceed by proving this intermediate
stronger soundness claim. We describe this result as we would need this
stronger statement for the dPCP construction in §6.1.2.
The manifold-vs.-point verifier is randomness efficient if the set of planes
and curves used in the planes and curves tables respectively are themselves
randomness efficient (i.e., P is a set of planes whose directions are chosen
from Hm where H is a subfield of F of appropriate size [MR08] and Γ is a
derandomized set of curves as described in [MR10a]). We refer the reader to
Lemma 8.2 in [MR10b] for further details. (While this theorem constructs an
LDRC, it is easy to transform them into PCPs).

3. Robustness: The conversion to a robust verifier (from a “manifold-vs.-
point” one) is straightforward, as in Lemma 2.5: the proof now only consists
of the function f , and the verifier randomly selects a manifold and reads every
point on the manifold (accepting iff the point values are consistent with an
accepting value for the entire manifold).

4. Parameters: The above construction in general works for a wide range of
parameter choices. The randomness efficient version due to [MR10a] requires

|F| = 2O((logn)β) for some β, so we follow this setting. Both ε and the query

28 I. Dinur and P. Harsha

complexity are constant powers of |F|, so we choose b0 small enough and b1
large enough.

It is to be noted that the randomness-efficient construction of the above robust
PCP is not regular, but actually it is not regular in a very mild sense. We get around
this by first regularizing the verifier using the generic regularization transformation
stated in Lemma 5.7.

6.1.2. The inner PCP decoder. As mentioned earlier, a combinatorial con-
struction of dPCPs (Theorem 6.5) was given by Dinur and Meir [DM11]. They con-
structed such dPCPs by extending the direct product testers of Impagliazzo, Kabanets
and Wigderson [IKW09]. Below, we give an “algebraic” construction of such a dPCP
by adapting the construction of the robust verifier from Theorem 6.4 above. The two
modifications are as follows.

• First of all, we need to construct a PCP decoder D, rather than a PCP verifier.
This means that in addition to the regular input, the decoder also receives
an index into the original proof (the NP witness) that needs to be decoded.
Observe that in the basic PCP described in step 1 above the function f is
(by construction) an encoding of the original NP witness in the sense that
the restriction of f to certain points in Fm is the supposed NP witness. So,
viewing the input index j as a point xj ∈ Fm all we need is, in addition to
the verification, to return the value of f(xj). This is done by modifying the
manifold to also contain this point xj (thereby increasing its dimension by
1). More precisely, for each input index j, we construct the manifold Ωj as
follows:

Ωj = {span(ω, xj)|ω ∈ Ω}.

Thus, for each input point xj we have a separate collection of manifolds, all
of which contain xj . Naturally, the manifolds in Ωj are biased towards xj ,
but nevertheless, a random point in a random ω ∈ Ωj is almost uniformly
distributed in Fm.
Let Ω̃ denote the disjoint union of all such manifolds over all the input in-
dices, i.e., Ω̃ =

⋃̇
jΩj . The proof relies on the fact that the following two

distributions on Ω̃× Ω× Fm are O(1/ |F|)-close.

D1: Choose a random ω̃ ∈ Ω̃, a random x ∈ ω̃, a random ω ∈ Ω conditioned
on x ∈ ω ⊆ ω̃ and output the triple (ω̃, ω, x).

D2: Choose a random ω ∈ Ω, a random x ∈ ω and a random ω̃ ∈ Ω̃ condi-
tioned on ω̃ ⊇ ω and output the triple (ω̃, ω, x).

We omit the calculations showing that these distributions are close. These
follow from the properties of the derandomized curves in Γ and the sampling
properties of the planes in P .
Coming back to the construction, the “enhanced” manifolds table describes
the restriction of the function f to the manifolds in Ω̃ (instead of Ω as before).
By the soundness condition of the manifold-vs.-point verifier described in the
earlier section, we know that for every proof f : Fm → F, there is a list of at
most ` ≤ 2/δ valid low degree encodings P 1, . . . , P ` such that

Pr
(ω̃,ω,x)←D2

[
A(ω̃)(x) = f(x) and ∀i ∈ [`],A(ω̃)|ω 6≡ P i|ω

]
≤ ε.

(Here we are simulating an Ω-manifolds prover by an Ω̃-manifolds prover by
choosing a random ω̃ ⊃ ω and outputting the prover’s value for ω̃ restricted

Composition of low-error 2-query PCPs 29

to ω). Since D1 and D2 are O(1/ |F|)-close, we have

Pr
(ω̃,ω,x)←D1

[
A(ω̃)(x) = f(x) and ∀i ∈ [`],A(ω̃)|ω 6≡ P i|ω

]
≤ ε+O

(
1

|F|

)
.

This is almost what we want to prove with the only difference being that
we get the agreement of the legal encoding P i with ω̃ on a random ω ⊆ ω̃
instead of over the entire manifold ω̃. However, by a standard Schwartz-
Zippel argument, this implies that most of the time, we must get agreement
over the entire manifold ω̃. Formally, for any i and ω̃ and a random ω ⊆ ω̃,
we have:

Pr
ω

[
P i|ω̃ 6≡ A(ω̃) and P i|ω ≡ A(ω̃)ω

]
≤ d

|F|
.

Hence, by a union bound over i ∈ [`], we have:

Pr
ω̃∈Ω̃,x∈ω̃

[
A(ω̃)(x) = f(x) and ∀i ∈ [`],A(ω̃) 6≡ P i|ω

]
≤ ε+

O (1)

|F|
+` · d
|F|

= ε′.

Or equivalently,

Pr
j,ω̃∈Ωj ,x∈ω̃

[
A(ω̃)(x) = f(x) and ∀i ∈ [`],A(ω̃) 6≡ P i|ω

]
≤ ε′. (6.1)

The decodable PCP follows immediately from the above as follows. The
dPCP decoder D on input an instance of CircuitSat, an input index j and
oracle access to a points table f : Fm → F, queries the points table on all
points of a random manifold ω̃ ∈ Ωj and checks if the restriction of f to ω̃
satisfies the local constraints and if so outputs f(xj) else it outputs ⊥. (6.1)
translates to

E
j,ω̃∈Ωj

[agr(f |ω̃,bad(f, j)] ≤ ε′,

where bad(f, j) = {z ∈ F|ω̃||D(z) /∈ {⊥, P 1(xj), . . . , P
`(xj)}}. This com-

pletes the construction of the decodable PCP.
• It is to be noted that even though the non-randomness-efficient robust PCP

verifier described in the earlier section is regular, the PCP decoder is not
regular because of the bias towards the input points xj . One can get around
this irregularity by either querying all points in the manifold but for the input
point xj or by weighting the input and proof points suitably. We can thus
assume that the constructed PCP decoder is, in fact, regular.

• The second modification is to the parameters. For this theorem we choose
|F| = nγ for small enough γ so that the query complexity is at most n1/8 (re-
call that it is a fixed power of |F|). This in turn determines α, a1, a2. Observe
that the proof alphabet is equal to F, which is of size nγ . Furthermore, note
that the PCP decoder can handle any input alphabet as long as its size is at
most that of the field F, which is nγ .

6.2. Putting it Together. Let D be the PCP decoder from Theorem 6.5, and

let V be the robust PCP from Theorem 6.4 with robust soundness error ε = 2O(logβ n),

30 I. Dinur and P. Harsha

query complexity 1/εO(1), randomness complexity log n+O(log 1/ε) and proof length
n · (1/ε)O(1).

Lemma 6.6. Let D, V, ε be as defined above and set εi = (ε)1/3i . There exist
constants c0, c1, c2, c3 > 0 such that for every i ≥ 0 as long as εi < c0, the following
holds. CircuitSat has a regular robust PCP verifier Vi with query complexity 1/εi

c1 ,
robust soundness error 2εi, proof alphabet Σi of size c3/εi

6, randomness complexity

log n+ c2
∑i
j=0 log 1/εj and proof length n · (

∏i
j=0 1/εj)

c2 .
Proof. For i = 0 the claim follows by taking ε0 = ε and setting V0 = regularε(V)

for V as in the hypothesis, where regularε(V) is defined according to Lemma 5.7.
Note that this process, regularizes V as the robust PCP verifier V from Theorem 6.4
is not necessarily regular. By choosing c1, c2, c3 large enough the inductive hypothesis
is established. Assume that the claim holds for i ≥ 0, and let us prove it for i + 1.
Define

Vi+1 = redεi+1
(Vi ~εi D),

where (a) Vi ~εi D stands for the verifier that results from (efficiently) composing
Vi with D as in Theorem 4.2 using (εi, εi

2)-samplers and (b) redεi+1
(·) denotes the

alphabet reduction operation from Lemma 5.6 that reduces the size of the proof
alphabet to c3/εi+1

6.
We first check that Vi+1 is well defined and then compute its parameters. Com-

position requires that both Vi and D are regular; the former is by the inductive
hypothesis and the latter by construction. Hence, both the composed verifier Vi~εiD
and the alphabet reduced verifier Vi+1 = redεi+1

(Vi ~εi D) are also regular. The
composition is defined as long as the input alphabet of D is large enough to be able
to encode a symbol from the proof alphabet of Vi. The input size on which D is run
is

N = quasi linear(1/εi
c1) ≤ (1/εi)

c1+1 = (1/εi+1)3(c1+1),

where we denote quasi linear(m) = m · poly logm. It will be convenient to assume
that N = (1/εi+1)3(c1+1) by padding the input. The input alphabet of D is Nγ =
(1/εi)

γ(c1+1). On the other hand, the proof alphabet of Vi is c3/εi
6. This works out

as long as c3/εi
6 ≤ 1/εi

γ(c1+1), which for sufficiently small εi is true if 6 < γ(c1 + 1)
which is settled by taking c1 large enough.

The alphabet reduction of Lemma 5.6 gives the required bounds on the alphabet
Σi+1 of Vi+1. We now calculate the remaining parameters.

• Soundness error: Let us first compute the soundness error of Vi ~εi D. It
is

δ + L(∆ + 4εi) = δ +
2

δ
· (2εi + 4εi) = δ +

12εi
δ
,

where we can choose any δ = ε(N) ≥ N−α = εi
α(c1+1). We will bound each

term by εi+1/2, which is equivalent to 24εi
2/3 ≤ δ ≤ εi1/3/2. Such a δ exists

if N−α = εi
α(c1+1) ≤ εi1/3/2, and this holds if 3α(c1 + 1) > 1 for sufficiently

small εi. Applying the alphabet reduction redεi+1
(·) of Lemma 5.6 increases

the soundness error by another εi+1 which results in 2εi+1.
• Query complexity: For Vi ~εi D the query complexity is 4/εi

4 times the
query complexity of D, thus, it is,

4

εi4
·N1/8 =

4

εi4
·
(

1

εi

)(c1+1)/8

= 4

(
1

εi+1

)3·(4+(c1+1)/8)

Composition of low-error 2-query PCPs 31

Now, after reducing the alphabet according to Lemma 5.6, the query com-
plexity of Vi+1 is multiplied by C log |σi|/εi+1

6 where |σi| is the size of the
proof of alphabet of Vi~εi D, which in turn is the proof alphabet of D which
is Nγ , Thus, the new query complexity is

4Cγ(1/εi+1)3(4+(c1+1)/8)+6 · logN

= 12C(c1 + 1)γ(1/εi+1)3(4+(c1+1)/8)+6 · log(1/εi+1).

Altogether, this is less than (1/εi+1)c1 if εi+1 is sufficiently small and c1 >
3(4 + (c1 + 1)/8) + 6 = 147

8 + 3
8c1, or c1 > 147/5.

• Proof length: The proof length of Vi ~εi D is equal the number of possible
random strings for Vi multiplied by the proof length of D, so it is

2logn+c2
∑i
j=0 log 1/εj ·Na1 = n ·

i∏
j=0

(1/εj)
c2 ·Na1

After applying the alphabet reduction transformation of Lemma 5.6, the proof
length increases by a factor C log |σi|/εi+1

6 = C logNγ/εi+1
6. This gives us

a bound of

n ·
i∏

j=0

(1/εj)
c2 ·Na1 · C log(Nγ)/εi+1

6

= n ·
i∏

j=0

(1/εj)
c2 · 3C(c1 + 1)γ/(εi+1)3(c1+1)a1+6 log(1/εi+1)

which gives the claimed bound if c2 > 3(c1 + 1)a1 + 6, as long as εi+1 is
sufficiently small.

• Randomness: The alphabet reduction of Lemma 5.6 does not change the
randomness complexity, so we only need to find the randomness complexity of
Vi~εiD. It is equal to sum of the log of the proof length of Vi, the randomness
of D and the log of the proof degree of D. Trivially bounding the degree of D
by the number of possible random strings which is Na2 , we obtain that the
randomness of Vi+1 is at most

log n+ c2

i∑
j=0

log 1/εj + a2 logN + a2 logN

Now if 2a2 logN = 6a2(c1 + 1) log 1/εi+1 ≤ c2 log 1/εi+1we are done.

6.3. Proof of Theorem 6.1. Let εi = ε
1/3i

0 and c0, c1, c2, c3 be as in the state-
ment of Lemma 6.6. We take the verifier to be Vi for i such that 1/εi = poly(g(n)).

More precisely, such that εi ≤ min
{

1
2g(n) , c0

}
< εi+1 = εi

1/3. Clearly there is a

unique such i ≤ O(log log n). By Lemma 6.6, V = Vi has robust soundness error
2εi ≤ 1/g(n) and query complexity 1/εi

c1 ≤ (2g(n))3c1 . The randomness complexity
is

log n+ c2

i∑
j=0

log 1/εj = log n+ c2

i∑
j=0

3−j log ε0 ≤ log n+O((log n)β).

32 I. Dinur and P. Harsha

Similarly, the proof length is easily seen to be n1+o(1). The equivalent statement
about label cover follows from Lemma 2.5.

We observe that the blowup in proof length and randomness complexity that is
incurred by the composition steps is of the same order of the blowup incurred by the
initial robust verifier V0. This gives the following corollary.

Corollary 6.7 (Even shorter PCPs). If CircuitSat has a robust verifier
with randomness complexity log n+ `, robust soundness error δ, and query complexity
poly(1/δ), then, for every δ′ > δ, it also has a robust verifier with query complexity
poly(1/δ′), robust soundness error δ′ and randomness complexity log n+O(`).

Acknowledgements. We would like to thank Eli Ben-Sasson, Oded Goldre-
ich, Venkatesan Guruswami, Dana Moshkovitz, Ran Raz, Omer Reingold, and Salil
Vadhan for helpful discussions. Special thanks to Oded Goldreich for many helpful
comments on an earlier version of this manuscript.

REFERENCES

[ABN+92] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M. Roth. Con-
struction of asymptotically good low-rate error-correcting codes through pseudo-
random graphs. IEEE Transactions on Information Theory, 38(2):509–516, 1992.
doi:10.1109/18.119713.

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of
approximate optima in lattices, codes, and systems of linear equations. J. Computer
and System Sciences, 54(2):317–331, 1997. (Preliminary Version in 34th FOCS,
1993). doi:10.1006/jcss.1997.1472.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, May 1998. (Preliminary Version in 33rd FOCS, 1992).
eccc:TR98-008, doi:10.1145/278298.278306.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new character-
ization of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary Version in 33rd
FOCS, 1992). doi:10.1145/273865.273901.

[AS03] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications.
Combinatorica, 23(3):365–426, 2003. (Preliminary Version in 29th STOC, 1997).
eccc:TR97-003, doi:10.1007/s00493-003-0025-0.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil
Vadhan. Robust PCPs of proximity, shorter PCPs and applications to coding.
SIAM J. Computing, 36(4):889–974, 2006. (Preliminary Version in 36th STOC,
2004). eccc:TR04-021, doi:10.1137/S0097539705446810.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. Ef-
ficient probabilistically checkable proofs and applications to approximation. In
Proc. 25th ACM Symp. on Theory of Computing (STOC), pages 294–304. 1993.
doi:10.1145/167088.167174.

[Bog05] Andrej Bogdanov. Gap amplification fails below 1/2, 2005. (Comment on ”Dinur,
The PCP theorem by gap amplification”). eccc:TR05-046.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Computing, 38(2):551–607, 2008. (Preliminary Version in 37th STOC, 2005).
eccc:TR04-060, doi:10.1137/050646445.

[DFK+11] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. PCP
characterizations of NP: Toward a polynomially-small error-probability. Comput.
Complexity, 20(3):413–504, 2011. (Preliminary Version in 31st STOC, 1999). eccc:
TR98-066, doi:10.1007/s00037-011-0014-4.

[DH09] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using
decodable PCPs. In Proc. 50th IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 472–481. 2009. eccc:TR09-042, doi:10.1109/FOCS.2009.8.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Prelimi-
nary Version in 38th STOC, 2006). eccc:TR05-046, doi:10.1145/1236457.1236459.

http://dx.doi.org/10.1109/18.119713
http://dx.doi.org/10.1006/jcss.1997.1472
http://eccc.hpi-web.de/report/1998/008
http://dx.doi.org/10.1145/278298.278306
http://dx.doi.org/10.1145/273865.273901
http://eccc.hpi-web.de/report/1997/003
http://dx.doi.org/10.1007/s00493-003-0025-0
http://eccc.hpi-web.de/report/2004/021
http://dx.doi.org/10.1137/S0097539705446810
http://dx.doi.org/10.1145/167088.167174
http://eccc.hpi-web.de/report/2005/046
http://eccc.hpi-web.de/report/2004/060
http://dx.doi.org/10.1137/050646445
http://eccc.hpi-web.de/report/1998/066
http://eccc.hpi-web.de/report/1998/066
http://dx.doi.org/10.1007/s00037-011-0014-4
http://eccc.hpi-web.de/report/2009/042
http://dx.doi.org/10.1109/FOCS.2009.8
http://eccc.hpi-web.de/report/2005/046/
http://dx.doi.org/10.1145/1236457.1236459

Composition of low-error 2-query PCPs 33

[Din08] ———. PCPs with small soundness error. SIGACT News, 39(3):41–57, 2008. doi:

10.1145/1412700.1412713.

[DM11] Irit Dinur and Or Meir. Derandomized parallel repetition via structured PCPs.
Comput. Complexity, 20(2):207–327, 2011. (Preliminary Version in 25th Con-
ference on Computation Complexity, 2010). arXiv:1002.1606, doi:10.1007/

s00037-011-0013-5.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP Theorem. SIAM J. Computing, 36:975–1024, 2006. (Preliminary Version
in 45th FOCS, 2004). doi:10.1137/S0097539705446962.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Interactive proofs and the hardness of approximating cliques. J. ACM,
43(2):268–292, March 1996. (Preliminary version in 32nd FOCS, 1991). doi:

10.1145/226643.226652.

[FK95] Uriel Feige and Joe Kilian. Impossibility results for recycling random bits in two-
prover proof systems. In Proc. 27th ACM Symp. on Theory of Computing (STOC),
pages 457–468. 1995. doi:10.1145/225058.225183.

[For66] G. David Forney. Concatenated Codes. MIT Press, Cambridge, MA, USA, 1966.

[FRS94] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-prover
interactive protocols. Theoretical Comp. Science, 134(2):545–557, 21 November
1994. (Preliminary Version in 3rd IEEE Symp. on Structural Complexity, 1988).
doi:10.1016/0304-3975(94)90251-8.

[Gol97] Oded Goldreich. A sample of samplers – a computational perspective on sampling.
Technical Report TR97-020, Electronic Colloquium on Computational Complexity,
1997. eccc:TR97-020.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with ran-
dom properties: A quality–size trade–off for hashing. Random Structures
and Algorithms, 11(4):315–343, December 1997. (Perliminary Version in 26th
STOC, 1994). eccc:TR94-002, doi:10.1002/(SICI)1098-2418(199712)11:4<315::
AID-RSA3>3.0.CO;2-1.

[H̊as01] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July
2001. (Preliminary Version in 29th STOC, 1997). doi:10.1145/502090.502098.

[IKW09] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product
testers and 2-query PCPs. In Proc. 41st ACM Symp. on Theory of Computing
(STOC), pages 131–140. 2009. eccc:TR09-090, doi:10.1145/1536414.1536435.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures
for error-correcting codes. In Proc. 32nd ACM Symp. on Theory of Computing
(STOC), pages 80–86. 2000. doi:10.1145/335305.335315.

[MR08] Dana Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear
size. SIAM J. Computing, 38(1):140–180, 2008. (Preliminary Version in 38th STOC,
2006). eccc:TR05-086, doi:10.1137/060656838.

[MR10a] ———. Sub-constant error probabilistically checkable proof of almost-linear size.
Comput. Complexity, 19(3):367–422, 2010. eccc:TR07-026, doi:10.1007/

s00037-009-0278-0.

[MR10b] ———. Two-query PCP with subconstant error. J. ACM, 57(5), 2010. (Preliminary
Version in 49th FOCS, 2008). eccc:TR08-071, doi:10.1145/1754399.1754402.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Computing, 27(3):763–803, June 1998.
(Preliminary Version in 27th STOC, 1995). doi:10.1137/S0097539795280895.

[RS97] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proc. 29th ACM
Symp. on Theory of Computing (STOC), pages 475–484. 1997. doi:10.1145/

258533.258641.

[Sze99] Mario Szegedy. Many-valued logics and holographic proofs. In Jiŕı Wiedermann, Pe-
ter van Emde Boas, and Mogens Nielsen, eds., Proc. 26th International Collo-
quium of Automata, Languages and Programming (ICALP), volume 1644 of LNCS,
pages 676–686. Springer, 1999. doi:10.1007/3-540-48523-6_64.

Appendix A. Extensions of dPCPs.
In this section, we give various extensions of decodable PCPs. The first, is to

define the notion of decodable PCPs for general pair languages, rather than just for

http://dx.doi.org/10.1145/1412700.1412713
http://dx.doi.org/10.1145/1412700.1412713
http://arxiv.org/abs/1002.1606
http://dx.doi.org/10.1007/s00037-011-0013-5
http://dx.doi.org/10.1007/s00037-011-0013-5
http://dx.doi.org/10.1137/S0097539705446962
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1145/225058.225183
http://dx.doi.org/10.1016/0304-3975(94)90251-8
http://eccc.hpi-web.de/report/1997/020
http://eccc.hpi-web.de/report/1994/002
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
http://dx.doi.org/10.1145/502090.502098
http://eccc.hpi-web.de/report/2009/090
http://dx.doi.org/10.1145/1536414.1536435
http://dx.doi.org/10.1145/335305.335315
http://eccc.hpi-web.de/report/2005/086
http://dx.doi.org/10.1137/060656838
http://eccc.hpi-web.de/report/2007/026
http://dx.doi.org/10.1007/s00037-009-0278-0
http://dx.doi.org/10.1007/s00037-009-0278-0
http://eccc.hpi-web.de/report/2008/071
http://dx.doi.org/10.1145/1754399.1754402
http://dx.doi.org/10.1137/S0097539795280895
http://dx.doi.org/10.1145/258533.258641
http://dx.doi.org/10.1145/258533.258641
http://dx.doi.org/10.1007/3-540-48523-6_64

34 I. Dinur and P. Harsha

CircuitSat. The second, is to allow the PCP decoder to output not just a single
symbol of the witness, but rather any polynomial-time computable function of the
witness. We provide sketches as to how constructions of dPCPs for CircuitSat can
be adapted to give these extensions.

A.1. dPCPs for pair languages and functions. We defined, in Definition 3.1
and Definition 3.2, decodable PCPs for CircuitSat. According to that definition, a
PCP decoder for CircuitSat receives a circuit C as explicit input and then locally
decoded symbols of a satisfying assignment for C by locally accessing a proof π.
However, we might as well have defined dPCPs for any NP language L. The (explicit)
input to the PCP decoder in this case is an instance x of L, and the PCP decoder
decodes symbols from the corresponding NP witness. More generally, we can define
dPCPs for any pair language. A pair language is a language in which the input consists
of pairs of strings of the form (x, y). For instance, the pair language corresponding to
CircuitSat is the P-complete language, Circuit-Value defined as follows:

CircuitVal = {(C, y) | C(y) = 1} .

Given a pair language L and any x, we define the language L(x) = {y | (x, y) ∈ L}.
For instance, for the pair language CircuitVal and any circuit C, CircuitVal(C)
refers to the set of satisfying assignments of C.

Maintaining the analogy with NP language and the set of witnesses, we will call
the first part, x, the actual input and the second part, y, the witness. Thus, the set
L(x) can be viewed as the set of witnesses to the fact that x is “in the language”.
In general, the two parts x and y need not be strings over the same alphabet. Since
the PCP decoder will read the actual input x in full, the alphabet of this part is
unimportant and we might as well assume that the alphabet is {0, 1}. On the other
hand, since the PCP decoder will decode symbols of the witness y, the choice of
alphabet of the witness is important. To be as general as possible, we will let this
alphabet be a function of the length of the first input. More specifically, let {Σn}∞n=1

be a family of alphabets and N : Z+ → Z+ any function. We will consider pair

languages L ⊆
⋃
n

(
{0, 1}n × Σ

N(n)
n

)
. For obvious reasons, we will refer to {Σn} as

the witness alphabet and N = N(n) as the length of the witness. For readability, we
will use shorthand Σ and N for the witness alphabet and witness length, bearing in
mind that both Σ and N may depend on n.

Decodable PCPs can be defined in the obvious fashion for any pair language L.
A dPCP decoder for a pair language L, gets as input an actual input x of the pair
language, it then locally queries a dPCP π and is expected to decode a symbol of a
witness y ∈ L(x). As before, the dPCP π is an encoding of the witness y that enables
both local checking and local decoding.

We can further generalize this notion of dPCPs for pair languages to allow local
decoding, not only of a single symbol of the witness y, but of an arbitrary function
of y. More formally, we wish to decode one of the functions in the vector of functions
h = (h1, . . . , hk) : ΣN → Σk on the witness. The PCP decoder explicitly knows h
and, on input x and j and oracle access to a dPCP π, is expected to output hj(y)
where y ∈ L(x) is the witness supposedly encoded by π.

We refer to these extensions of dPCPs as “functional dPCPs”, defined formally
below.

Definition A.1 (Functional dPCPs). Let H =
{
h(n)

}
n

be a family of functions

where h(n) : ΣN → Σk. An H-PCP decoder for a pair language L over witness

Composition of low-error 2-query PCPs 35

alphabet Σ and proof alphabet σ is a probabilistic polynomial-time algorithm D that
on input x ∈ {0, 1}n and an index j ∈ [k], tosses r random coins and computes a
window I = (i1, . . . , iq) and a (local decoding) function f : σq → Σ ∪ {⊥} of decision
complexity at most s(n).
Completeness: We say that D is complete if for every input x and y ∈ L(x), there

exists a proof π ∈ σm, also called a decodable PCP, such that

Pr
j,I,f

[f(πI) = hj(y)] = 1

where j ∈ [k] is chosen uniformly at random and I, f are distributed according
to x, j and the verifier’s random coins.

Robust Soundness: We say that D has robust soundness error δ and list size L,
if for every x and for any π ∈ σm, there is a list of 0 ≤ ` ≤ L strings
y1, . . . , y` ∈ L(x) such that

E
j,I,f

[agr (πI ,bad(f))] ≤ δ,

where

bad(f) ,
{
w ∈ σq

∣∣ f(w) /∈
{
⊥, hj(y1), . . . , hj(y

`)
}}

.

The special case in which the functions H being decoded are the symbols of the
witness corresponds to the case where the vector of functions h : ΣN → Σk is the set
of N projections h(y1, . . . , yN) = (y1, . . . , yN). In this case, we will drop the H and
refer to the H-PCP decoder for L as just the PCP-decoder for the pair language L.

A.2. Constructions of functional dPCPs. We now show how existing con-
structions of dPCPs for CircuitSat yield functional dPCPs for any pair language in
NP and any vector of polynomial time computable functions H.

In the terminology of pair languages, a decodable PCP for CircuitSat is actually
a decodable PCP for the P-complete pair language CircuitVal. A closer look at the
construction of dPCPs (see §6.1.2) reveals that the constructions actually gives a
dPCP for the NP-complete pair language, non-deterministic Circuit-Value, defined as
follows.

Nondeterministic-CircuitVal = {(C, y) | ∃z, C(y, z) = 1} .

We now derive the existence of functional dPCPs for any pair language in NP in two
steps.

• The existence of a dPCP for Nondeterministic-CircuitVal implies the
existence of dPCPs for any pair language L ∈ NP : just take the polyno-
mial size non-deterministic circuit that checks the validity of the witness
y for the fact that x ∈ L, and give it as input to the PCP decoder for
Nondeterministic-CircuitVal.

• The existence of dPCPs for any pair language in NP in turn implies the
existence of functional dPCPs for any pair language in NP and any polynomial
time computable vector of functions H. Let L be a pair language and suppose
H =

{
h(n)

}
n

is a family of functions h(n) : ΣN → Σk that are (polynomial
time computable) functions of the witness y (Σ may also depend on n). Define
a pair language by

L′ = {(x, z) | ∃y ∈ L(x), s.t. z = h1(y) ◦ h2(y) ◦ . . . ◦ hk(y)} ,

36 I. Dinur and P. Harsha

where h(n) = (h1, . . . , hk), n = |x|, and ◦ denotes string concatenation.
Clearly, if L ∈ NP then L′ ∈ NP . A dPCP for L′ will give the desired
outcome, since decoding the ith symbol of z amounts to decoding the func-
tion hi of y.

