
Covering CSPs

Irit Dinur †

Weizmann Institute
Gillat Kol §

Weizmann Institute

Abstract—We study the covering complexity of constraint
satisfaction problems (CSPs). The covering number of a CSP
instance C, denoted v(C), is the smallest number of assignments
to the variables, such that each constraint is satisfied by at
least one of the assignments. This covering notion describes
situations in which we must satisfy all the constraints, and are
willing to use more than one assignment to do so. At the same
time, we want to minimize the number of assignments.

We study the covering problem for different constraint
predicates. We first observe that if the predicate contains an
odd predicate, then it is covered by any assignment and its
negation. In particular, 3CNF and 3LIN, that are hard in
the max-CSP sense, are easy to cover. However, the covering
problem is hard for predicates that do not contain an odd
predicate:

1. For the 4LIN predicate, it is NP-hard to decide if a given
instance C has v(C) at most 2, or v(C) is super-constant.

2. (a) We propose a framework of covering dictatorship
tests. We design and analyze such a dictatorship test for every
predicate that supports a pairwise independent distribution.
(b) We introduce a covering unique games conjecture, and use
it to convert the covering dictatorship tests into conditional
hardness results.

3. Finally, we study a hypothesis about the hardness of
covering random instances that is similar to Feige’s R3SAT
hypothesis. We show the following somewhat surprising im-
plication: If our hypothesis holds for dense enough instances,
then it is hard to color an O(1)-colorable hypergraph with a
polynomial number of colors.

I. INTRODUCTION

We study the covering complexity of constraint satisfac-
tion problems (CSPs). Let ϕ be a predicate, and let C be a ϕ-
CSP instance, which is a set of ϕ-constraints over n boolean
variables and their negations. The covering number of C,
denoted ν(C), is the smallest number of assignments to the
variables that “covers” all of the constraints, i.e., such that
each constraint is satisfied by at least one of the assignments.
We denote by cover-ϕ the problem of finding the covering
number of a given ϕ-CSP instance.

The notion of cover-CSPs differs from the standard no-
tion of max-CSPs, as they each operate under a different

†Research supported in part by the Israel Science Foundation grant no.
1179/09 and by the Binational Science Foundation grant no. 2008293 and
by an ERC grant no. 239985. Part of the research done while visiting
Microsoft Research in New England.

§Research supported by the Israel Science Foundation and by the NSF.
Part of the research done while visiting Microsoft Research in New
England.

restriction and try optimize a different aspect of the problem
given the restriction: The notion of max-CSPs is relevant
when we restrict ourselves to a single assignment and want
to maximize the fraction of satisfied constraints. In contrast,
the notion of a covering number is of interest when we must
satisfy all or nearly all of the constraints, and are willing to
use more than one assignment to do so. Our goal is then to
minimize the number of needed solutions.

One example of a situation described by the covering
number is the dinner party problem: You are having some
friends over for dinner, and each one has different dietary
constraints. You want everyone to have at least something to
eat, and at the same time would like to cook as few dishes
as possible. Another example is when designing a system
of health care centers, each offering different services, that
will be accessible and will meet the needs of all patients.

Finding the exact covering number is NP-hard for many
interesting predicates ϕ. Therefore, we study the hardness of
approximating this value, namely minimizing the number of
solutions that together cover all of the constraints. Formally,
we define the following gap problem:
gap-cover-ϕc,s problem: Let c < s ∈ N. Given a ϕ-CSP
instance C, decide between

• Yes case: ν (C) ≤ c.
• No case: ν (C) ≥ s.

As is done for the max-CSP case, we study the covering
problem for different predicates ϕ, and seek a characteriza-
tion of predicates that are covering-hard to approximate. It
turns out that the set of predicates which are covering hard
to approximate is very different from the set of predicates
that are hard to approximate in the max-CSP sense. In fact
we show that the sets are (in a sense) incomparable.

Covering and Coloring: Covering CSPs can be viewed
as a generalization of graph (or hypergraph) coloring prob-
lems. A coloring problem is given by a system of not-
equal (or not-all-equal) constraints on a set of vertices. It
has already been observed by [7] that a graph (hypergraph)
is 2c colorable iff there are c assignments to the variables
that cover all constraints. Our new notion of covering CSPs
extends that of coloring as follows. It is natural to allow
an algorithm “more” colors when attempting to legally
color a graph, yet, in contrast, it is usually meaningless
to allow “more” alphabet symbols for satisfying a ϕ-CSP
for a general predicate ϕ. The covering formulation gives a

natural way in which “more colors” can be used in satisfying
a ϕ-CSP for any ϕ.

We mention that the paper [7] introduces the related no-
tion of “covering PCPs” and proves hardness of approximate
hypergraph coloring by analyzing the hardness of covering
the not-all-equal predicate. Interestingly, our work reveals
that understanding the hardness of covering the not-all-equal
predicate is central for any covering-CSP problem.

A. Our Results

We first observe that odd predicates ϕ (i.e., predicates
ϕ : {±1}t → {±1} for which ∀x : ϕ (x) = −ϕ (−x)) are
easy to cover: Any pair of an assignment a and its negation
−a will cover the entire instance, since always either a or
−a causes ϕ to be true. Moreover, let O be the set of
predicates ϕ containing an odd predicate, all the predicates
ϕ ∈ O are easy. Formally, we define O to be the set of
predicates ϕ : {±1}t → {±1} (as is customary, we view a
(−1) = (−1)

1 value as “true”) satisfying:

O =
{
ϕ
∣∣∣∀x ∈ {±1}t : ϕ (x) = −1 or ϕ (−x) = −1

}
.

Observation. Let ϕ ∈ O, and let C be a ϕ-CSP instance.
Then ν(C) ≤ 2.

In particular, 3CNF and 3LIN which are both very hard to
approximate in the max-CSP sense, are easy in the covering
sense.

1) Covering Hardness of 4LIN: In contrast to 3LIN, we
show that the predicate ϕ = 4LIN, that only accepts inputs
with an odd number of 1s, is NP-hard. Formally, for
4LIN : {±1}4 → {±1}, 4LIN (x1, x2, x3, x4) = x1x2x3x4,
we show:

Theorem 1. gap-cover-4LIN2,k is NP-hard for every k ∈
N. Furthermore, for sufficiently small ε > 0, the following
holds: In the yes case the instance is coverable by two
assignments, each of which (seperatly) satisfies 1−ε fraction
of the constraints. In the no case, no k assignments cover
more than 1− 1

2k + 20
√
ε fraction of the constraints.

Observe that the problem gap-cover-4LIN1,k is easy for
every k, as we can run a Gaussian elimination process to
check whether there exists a single assignment that satisfies
all the constraints.

We mention that our result can be viewed as a strength-
ening of Håstad’s hardness result [8] for linear predicates
with even arity≥ 4, since in the yes case there is a solution
that satisfies 1 − ε fraction of the constraints (actually,
there are at least two such solutions). Furthermore, observe
that k random assignments are expected to satisfy 1 − 1

2k

fraction of the constraints, thus the no case shows that no k
assignments can cover significantly more constraints than
random k assignments.

Our proof of Theorem 1 relies on a dictatorship test
whose analysis extends the analysis of [7] of the hardness of

covering the 4-not-all-equal predicate, using the language of
the invariance principle developed by [15], [14], [17], [16].

2) Characterization of Covering-Hard Predicates: We
conjecture that for every ϕ 6∈ O the cover-ϕ problem
is hard to approximate, and are able to partially prove
this conjecture. To do so, we offer a ϕ-based covering
dictatorship test. We then suggest a covering conjecture that
corresponds to the unique games conjecture, and show how
to use the dictatorship test to obtain conditional hardness of
covering results.

Covering dictatorship test for a general predicate ϕ: We
develop a general framework for covering dictatorship tests
using a given predicate ϕ. The completeness and soundness
criteria are different in the covering world:
• In the yes case, two dictators perfectly cover the test’s

constraints.
• In the no case, any regular set of functions F =
{f1, . . . , fk} fails to cover all of the test’s constraints. F
is called regular if for any K ⊆ [k] the product function
fK =

∏
`∈K f` is far from a dictatorial function (i.e.,

all its influences are low). We mention that this involved
soundness condition is inherent, see Section I-B2.

Following Austrin and Mossel [2] we prove

Theorem 2. Let ϕ 6∈ O, and assume that there exists a
balanced, pairwise independent distribution on the support
of ϕ. Then there exists a ϕ-based covering-dictatorship test
with completeness 2 and soundness k, for every k ∈ N.

We remark that every predicate ϕ 6∈ O that does not
have degree-1 and degree-2 terms in its Fourier expansion,
satisfies the condition of the theorem.

Covering unique games hardness for a general predi-
cate ϕ: We suggest the following covering conjecture that
corresponds to the unique games conjecture:

Conjecture 3 (Covering Unique Games). There exists c ∈
N such that for every sufficiently small δ > 0 there exists
R ∈ N such that the following holds. Given a bipartite
label cover instance LC with permutation constraints over
label set [R] and vertex set U ×V , it is NP-hard to decide
between:
• Yes case: There exist c assignments such that for every

vertex u ∈ U , at least one of the assignments satisfies
all the edges touching u.

• No case: OPT (LC) ≤ δ. I.e., every assignment satisfies
at most δ fraction of the edge constraints.

We mention that Khot and Regev [12] consider a similar
conjecture in the max-CSP setting: In the yes case they
require a single assignment that for 1 − δ fraction of the
vertices u ∈ U , satisfies all the edges touching u. They
show that their conjecture is equivalent to the unique games
conjecture. See further discussion regarding the formulation
of our covering conjecture in Section V-A.

Our conjecture is clearly false with c = 1, but as far as we
know may be true with even c = 2. The conjecture is incom-
parable to the unique games conjecture (our completeness
does not require any single assignment to satisfy a large
fraction of edges). However it clearly implies the unique
games conjecture with completeness 1

c (instead of 1− ε).
As usual, we say that a problem P is covering unique

games hard, if it is hard assuming Conjecture 3.

Theorem 4. Let ϕ 6∈ O, and assume that there exists a
balanced, pairwise independent distribution on the support
of ϕ. Let c be the completeness constant from the covering
unique games conjecture. Then gap-cover-ϕ2c,k is covering
unique games-hard for every k ∈ N.

3) Hardness of Approximate Coloring and Covering Ran-
dom CSP Instances: We now return to the problem of
approximate coloring: Given an O(1)-colorable graph (or
hypergraph), what is the smallest number of colors needed
to color it in polynomial time? This is a notorious open
question with an exponential gap between known upper [9],
[3], [1] and lower [7], [10], [4] bounds. One might hope
that viewing this classical problem in the broader context of
covering-CSPs may shed new light on it.

We show some progress in this direction, if one is willing
to assume hardness of covering random CSP instances.

In a seminal paper, Feige [5] hypothesizes that no polyno-
mial time algorithm is able to distinguish between a random
3SAT and a satisfiable one, and shows that this implies
various hardness of approximation results. However, since
a 3SAT instance is always coverable by 2 assignments, it
seems impossible to derive a hardness of coloring results
from Feige’s hypothesis.

We formulate an analogous hypothesis about the hardness
of distinguishing between random and 2-coverable 4LIN-
CSP instances. We prove that if our hypothesis holds with
sufficient density, it implies hardness of approximate hyper-
graph coloring to within polynomial factors.

Hypothesis 5 (Covering 4LIN Hypothesis, with density
parameter ∆). There is no polynomial time algorithm
that outputs typical for most 4LIN-CSP instances with
n variables and m = ∆ · n clauses, and never outputs
typical for a 2-coverable 4LIN-CSP instance.

We point out that our NP-hardness result (Theorem 1)
implies that none of the currently known algorithmic tech-
niques can refute this hypothesis. Furthermore, the best
known algorithms can only refute instances with density at
least ∆ ≥ n0.5 [6].

Theorem 6. If Hypothesis 5 holds with density parameter
∆ = nδ for some positive δ > 0, then it is hard to decide if
a 4-uniform hypergraph is 4-colorable or requires at least
a polynomial number of colors.

In Section VI we formulate a (weaker) hypothesis for

covering a general predicate ϕ, and show that it has the
same implication.

B. Technique

We face two main challenges: The first is achieving
perfect covering completeness (being able to cover all the
constraints vs. covering 1 − ε of them). We introduce a
technique of “duplicating” the label cover instance and
design an appropriate correlated-noise dictatorship test. The
basic technique is explained below, variations of it are used
in the first two parts of the work. The second challenge is
in handling several assignments at once when proving the
soundness property. This involves solving several different
problems, some of which are very roughly described below.
We next present a very informal discussion of our efforts.

1) Achieving perfect completeness: Hardness of approx-
imation results for CSPs are usually obtained through a
dictatorship test for a given function f : {±1}R → {±1}.
A typical dictatorship test involves selecting a few points in
{±1}R and then querying the function f on slight pertur-
bations of these points. The perturbation usually involves
flipping the value of each coordinate independently with
small probability ε. While the perturbation is very effective
in killing the large Fourier coefficients of f , it also “ruins”
the perfect completeness, causing even a perfect dictator to
be accepted with probability 1− ε.

To overcome this problem we offer the new notion of a
duplicated label cover instance: Given a label cover instance,
each constraint πv,u : [R] → [R] will be extended to the
“duplicated” constraint πv,u : [2R]→ [2R] by

∀j ∈ [R] , πv,u(j +R) = πv,u(j) +R.

This notion of a duplicated label cover will be central in our
work. Observe that if L : V → [R] satisfies the constraints
in the original label cover, then both L and L + R satisfy
the constraints in the duplicated label cover. This allows us
to design a dictatorship test with enough random noise to
eliminate the large Fourier coefficients, without hurting the
perfect completeness. The idea is that independently for each
pair of coordinates j, j+R, noise will be applied to at most
one of the two coordinates.

2) Dealing with several proofs: When proving covering
soundness in a dictatorship test we have to analyze the
test’s behavior on several functions at once, which means an
involved rejection probability expression. This expression is
basically the product of the expressions for the individual
functions.

One complication arises from the fact that the
test might be completely covered even if none of
the functions are “dictatorial”. For example, suppose
that f is a random function and f ′ = f · xj .
Then always either f(x)f(y)f(z)f(−xyz) = −1 or
f ′(x)f ′(y)f ′(z)f ′(−xyz) = −1. This means that the nat-
ural 4LIN test will always pass while both f and f ′ are

completely random functions. The reason this happens is
because f · f ′ is a dictatorship, forcing our analysis to
consider all possible products of the given functions.

This brings about another complication, which is that even
if all given functions are “folded”, or balanced, their product
does not have to be. This means that the empty Fourier
coefficient may be large, which complicates the analysis.

Covering hardness of 4LIN: Both of the above prob-
lems were faced by [7] when analyzing the covering sound-
ness of the NAE4 predicate. The technique of [7] does carry
over (with some adaptation originating from our correlated
noise) to proving covering soundness for the 4LIN predicate.
Indeed, we use a test very similar to theirs (this test was
originally suggested by Håstad [8]). However, we analyze
the test in the more recent framework of the invariance
principle developed by [15], [14]. This technique follows our
intuition of the problem better, and is less “tailor-made” for
specific predicates (indeed, in the second part of the work we
use the invariance principle to show a more general result).

We mention that we cannot use the invariance principle
directly, and that the usage of the invariance principle
to obtain NP-hardness results (as opposed to conditional
results) is challenging. Similar difficulties were recently
faced by [17], [16], and we indeed use parts of their analysis.

Covering dictatorship test for a general predicate ϕ:
Our starting point for analyzing a general predicate ϕ is the
work of [2], who considered any predicate ϕ that contains
a pairwise independent distribution in its support. Their test
uses independent noise, has a simpler rejection expression,
and also assumes folding.

To analyze our test we rely on the following observation:
every predicate ϕ /∈ O is contained in a shifted NAE
predicate (see Claim II.1). Equipped with this observation,
we bound the rejection term by exploiting the symmetry of
the Fourier expansion of NAE, extending a ‘pairing’ trick
from [7]. We mention that we cannot simply reduce the
covering soundness of NAE4 to that of ϕ, as the distribution
used by our dictatorship test must be supported on ϕ for
maintaining completeness. Still, as it turns out, the key for
analyzing the rejection term for a general predicate ϕ /∈ O
is analyzing the same term for NAE.

Covering unique games hardness for a general predi-
cate ϕ: Having developed a dictatorship test, the “straight-
forward” path, following [11], is to analyze it for a func-
tion f that is the average of the long-code functions fv :
{±1}R → {±1} for all neighbors v of a given u. An
influential coordinate for f implies a consistent influential
coordinate for many fv’s.

In our case, however, since we have k proofs, we also
have k expected functions f1, . . . , fk for the same vertex u.
If these k functions cover the dictatorship test we can only
deduce that there is a product of f1, . . . , fk that has an
influential coordinate. Constructing a good assignment for
the label cover instance becomes non-trivial. To solve this

we must analyze the dictatorship test in the more general
multi-function setting.

C. Future Work

This work is a first step in studying the covering com-
plexity of CSPs, and there are many interesting directions
to pursue. Aside from the obvious directions of proving more
NP-hardness results, we mention a couple of directions:

Quantitative results: Our NP-hardness result for 4LIN
implies hardness of covering a 2-coverable instance with
about Ω(log log log n) assignments. For the special case of
coloring, better quantitative results are known, correspond-
ing to a gap between O (1) and Ω(log log n) [10]. On the
other hand, the best algorithms require O(log n) assignments
corresponding to a polynomial number of colors. Our ques-
tion is: Is there any predicate ϕ for which one can prove
NP-hardness with a gap of O (1) and Ω(log n)? In fact, any
gap between O(1) and ω(log log n) would be interesting.

More general characterization: What is the complexity
of covering predicates ϕ /∈ O that do not support a pairwise
independent distribution?

Covering unique games conjecture: What can be said
about the covering unique games conjecture? Can it be
related to other conjectures such as Khot’s d-to-1 conjecture?

Reductions between covering problems: Can one de-
vise ‘direct’ reductions between covering problems? For
example, does cover-NAE reduce to cover-ϕ for some other
predicate ϕ? Gadget reductions simply fail in this context,
and it would be interesting to find alternatives.

D. Organization

We begin in Section II with preliminaries and definitions.
The covering hardness of 4LIN is proved in Section III. The
characterization of covering-hard predicates can be found in
Sections IV-V, where Section IV is devoted to the covering
dictatorship test, and Section V is devoted to the covering
unique games hardness result. Finally, the relations between
random CSP instances and hardness of approximate coloring
are discussed in Section VI.

II. DEFINITIONS AND PRELIMINARIES

A. Covering Problems

Let X = {x1, ..., xn} be a set of n boolean variables,
each taking a value in {±1}. As is customary, we view a
(−1) = (−1)

1 value as “true”, and a 1 = (−1)
0 value as

“false” (e.g., 1 ∧ (−1) = 1). Let ϕ : {±1}t → {±1} be
a predicate. A ϕ-constraint over X is an equation of the
form ϕ (σ1xi1 , . . . , σtxit) = b, where i1, . . . , it ∈ [n] and
b, σ1, . . . , σt ∈ {±1}. A ϕ-CSP instance C is a set of ϕ-
constraints over X .

Let L ⊆ {±1}n be a set of assignments for X . We
say that L covers the instance C if for every constraint
in C, there exists an assignment in L that satisfies it. The
covering number of C, denoted ν(C), is the smallest number

of assignments for X such that each constraint is satisfied
by at least one of the assignments. We denote by cover-ϕ
the problem of finding the covering number of a given CSP.

1) Containment in NAE: The following claim shows that
the support of any predicated ϕ /∈ O is contained in the
support of NAE, upto a “sign”. The claim will be very useful
to us, as it allows us to move from a general predicate ϕ to
the specific predicate NAE. Recall −1 denotes acceptance:

Claim II.1. For every ϕ /∈ O, ϕ : {±1}t → {±1}, there is
a “sign” σ = (σ1, . . . , σt) ∈ {±1}t such that ∀x ∈ {±1}t :
ϕ (σ1x1, . . . , σtxt) ≥ NAEt (x1, . . . , xt) .

The claim easily follows from the fact that for a predicate
ϕ /∈ O there exists an assignment a and its negation −a that
are both rejected by ϕ. Thus, by taking σ = a we get that
ϕ (σ1x1, . . . , σtxt) rejects both the assignment 1t and (−1)

t,
and thus its support is contained in the support of NAEt.

B. Label Cover

A bipartite label cover instance is a tuple LC =
(U, V,E,R1, R2,Π). Here U and V are the two vertex sets
of a bipartite graph, and E is the set of edges between U
and V . R1 and R2 satisfy R1 ≤ R2 ∈ N. [R1] is the set
of labels for vertices in U , and [R2] is the set of labels for
vertices in V . Π is a collection of “projections”, one for
each edge in E. That is, Π = {πv,u : [R2]→ [R1]}(u,v)∈E .

Let L be an assignment for the vertices in U × V ,
that assigns to each vertex in U a label from [R1], and
to each vertex in V a label from [R2]. Let (u, v) ∈ E
be an edge. We say that L satisfies the edge (u, v) if
πv,u (L (v)) = L (u). The value of a label cover instance
LC, denoted OPT (LC), is the maximal fraction of satisfied
edges over all assignments L. It is well know that it is NP-
hard to approximate the value of a given label cover instance.

1) Smooth Label Cover: A smooth label cover instance
is a label cover instance that satisfies the following: Let
v ∈ V . In expectation over neighbors u of v, every large
set of assignments for v induces a large set of assignments
for u. In other words, for a sufficiently large A ⊆ [R2], it
holds that Eu∈Γ(v) |πv,u (A)| is large.

Lemma II.2 ([13]). Let ε > 0 be a sufficiently small
constant and let r ∈ N be a sufficiently large constant. There
exists an efficient transformation that maps an instance ψ
of 3SAT to an instance LCε,r = (U, V,E,R1, R2,Π) of
bipartite label cover such that
• Completeness: If ψ is satisfiable, OPT (LCε,r) = 1.
• Soundness: If ψ is unsatisfiable, OPT (LCε,r) < cr0,

where c0 ∈ (0, 1) is an absolute constant.
• Smoothness: For every vertex v ∈ V and any subset

of labels A ⊆ [R2] satisfying |A| ≥ 1
ε3 , it holds that

Pr
u∈Γ(v)

[
|πv,u (A)| ≥ 1

ε2

]
≥ 1− 2ε.

2) Label Cover with Permutation Constraints: Of partic-
ular interest to us are bipartite label cover instances with
permutation constraints. Namely, where R1 = R2 = R ∈ N
(that is, the sets of labels for U and V are the same),
and Π = {πv,u : [R]→ [R]}(u,v)∈E is a collection of
permutations.

3) Duplicated Label Cover: We define the new notion
of a duplicated label cover instance, which will play
a main role in our proofs. We assume to be given a
bipartite label cover instance LC′ = (U, V,E,R1, R2,Π

′)
with Π′ =

{
π′v,u : [R2]→ [R1]

}
(u,v)∈E . The

duplicated-LC′ instance is a new bipartite label
cover instance LC = (U, V,E,R1, 2R2,Π), where
Π = {πv,u : [2R2]→ [R1]}(u,v)∈E , and for every
(u, v) ∈ E the projection πv,u is given by:

j ∈ [R2] : πv,u (j) = πv,u (j +R2) = π′v,u (j) .

In other words, to construct the duplicated instance, we
double V ’s labels set. The new labels added are of the form
j +R2 for j ∈ [R2], and each new label j +R2 “behaves”
like the original label j.

When given a bipartite label cover instance LC′ =
(U, V,E,R,R,Π′) with permutation constraints Π′ ={
π′v,u : [R]→ [R]

}
(u,v)∈E , we define the unique games

duplicated-LC′ to be the new bipartite label cover instance
LC = (U, V,E, 2R, 2R,Π) with permutation constraints,
where Π = {πv,u : [2R]→ [2R]}(u,v)∈E , and for every
(u, v) ∈ E the permutation πv,u is given by:

j ∈ [R] : πv,u (j) = π′v,u (j) , πv,u (j +R) = π′v,u (j)+R.

C. Fourier Analysis

It is well knows that every function f : {±1}n → R can
be uniquely expressed as a multilinear polynomial (called
the Fourier expansion of f), that is given by f (x) =∑
S⊆[n] f̂ (S)χS (x) , where for every S ⊆ [n] it holds that

f̂ (S) ∈ R, and χS is the function χS : {±1}n → {±1}
given by χS (x) =

∏
i∈S xi.

1) Influences: Let f : {±1}n → R be a function, and let
i ∈ [n] be a coordinate. The influence of coordinate i on the
function f is Infi (f) =

∑
S: i∈S f̂

2 (S) . Let d ∈ N. The
d-low-degree influence of coordinate i on f is Inf≤di (f) =∑
S: i∈S
|S|≤d

f̂2 (S) . The influence Infi (f) measures how much

the function f depends on its ith variable, while the low-
degree influence Inf≤di (f) measures this for the low degree
part of f . An important property of low-degree influences
is that the number of coordinates with a large low-degree
influence must be small. In particular, we have the following
claim:

Claim II.3. Let d ∈ N, τ > 0, and f : {±1}n → [−1, 1]. It
holds that

∣∣∣{i ∈ [n]
∣∣∣Inf≤di (f) ≥ τ

}∣∣∣ ≤ d
τ .

D. Correlated Probability Spaces

We say that
(∏

i∈[t] Ωi, µ
)

is a finite correlated prob-
ability space if µ is a distribution on the finite product set∏
i∈[t] Ωi. Of a particular interest to us is the case where the

correlated space is defined by a measure that is balanced and
pairwise independent.

Definition II.4 (Balanceness, Pairwise Independence). Let(∏
i∈[t] Ωi, µ

)
be a finite correlated probability space.

We say that µ is balanced if, for any i ∈ [t] and ω ∈ Ωi,
it holds that Prw∼µ [wi = ω] = 1

|Ωi| .

We say that µ is pairwise independent if, for any i 6= i′ ∈
[t] and ω ∈ Ωi, ω

′ ∈ Ωi′ , it holds that
Pr
w∼µ

[wi = ω ∧ wi′ = ω′] = Pr
w∼µ

[wi = ω] · Pr
w∼µ

[wi′ = ω′] .

III. COVERING HARDNESS OF 4LIN

A. PCP Verifier (Proof of Theorem 1)

As usual, we prove Theorem 1 by reduction from label
cover. Specifically, we assume to be given a bipartite label
cover instance LC′ = LC′ε,r constructed from a 3SAT
formula by the transformation described in Lemma II.2, and
construct a PCP verifier that checks proofs for LC′ by only
performing 4LIN tests.

Let LC′ = (U, V,E,R1, R2,Π
′),

Π′ =
{
π′v,u : [R2]→ [R1]

}
(u,v)∈E , be the given in-

stance, and let LC = (U, V,E,R1, 2R2,Π), Π =
{πv,u : [2R2]→ [R1]}(u,v)∈E , be the duplicated-LC′ in-
stance (see Section II-B3). A proof P for LC′ consists
of a collection of truth tables of boolean functions, one
for each vertex v ∈ V . Formally, P = (fv)v∈V where
fv : {±1}2R2 → {±1}. The function fv is, supposedly, the
long code encoding of the label assigned to v by a satisfying
assignment for LC.

Our verifier’s algorithm for checking the proof P is found

in Figure 1. The distributionsHε,u,v,v′ on
(
{±1}2R2

)4

used
by the verifier are specified in Section III-B2.

Algorithm 1 VerPε

• Randomly select an edge (u, v) ∈R E and a neighbor
v′ ∈R Γ (u) ⊆ V .

• Generate a tuple (x, y, z, w) ∈
(
{±1}2R2

)4

from the
distribution Hε,u,v,v′ .

• Accept iff f (x) f (y) g (z) g (w) = −1,
where f and g are the functions in P associated with
vertices v and v′ (respectively).

Let ε ∈
(
0, 1

2

)
, k ∈ N, and let P = {P1, ..., Pk} be a

set of any k proofs. Define Rej
(
VerPε

)
to be the indicator

random variable for the rejection of the set of proofs P
by Verε. That is, Rej

(
VerPε

)
is 1 if none of the proofs

in P satisfies the test selected by Verε, and 0 if P contains
a proof that satisfies the test.

We show that the verifier satisfies the following complete-
ness and soundness conditions:

Lemma III.1. Ver satisfies the following properties:
• Completeness: Let ε ∈

(
0, 1

2

)
and r ∈ N. If

OPT
(
LC′ε,r

)
= 1, then there exist two proofs, P

and Q, such that

Pr
[
Rej

(
Ver{P,Q}ε

)]
= 0.

That is, if there is a satisfying assignment for LC′ε,r,
then there are 2 proofs that together cover all the tests
performed by Verε.
Furthermore, each of the proofs P and Q is accepted
by Verε with probability 1− ε.

• Soundness: For any sufficiently small ε ∈
(
0, 1

2

)
and

sufficiently large r ∈ N, there exist constants δ > 0
and ξ > 0 that only depend on ε (e.g., δ = 20

√
ε and

ξ = ε14), such that for any k ∈ N, the following holds:
If there exists a set of proofs P of size at most k such
that

Pr
[
Rej

(
VerPε

)]
<

1

2k
− δ.

Then OPT
(
LC′ε,r

)
> ξ.

In particular, if OPT
(
LC′ε,r

)
≤ ξ, then there is no

constant number of proofs that together cover all the
tests performed by Verε.

Note that the soundness property of Lemma III.1 is tight
in the sense that k random proofs are expected to cover all
but 1

2k fraction of the tests performed by the verifier. We
show that no k proofs can do significantly better than k
random proofs.

The proof of the completeness part of Lemma III.1 can
be found in Section III-C, the proof of the soundness part
is omitted. Theorem 1 follows easily from the last lemma.

B. Distributions

Consider the duplicated label cover instance LC. Fix
vertices u ∈ U , v, v′ ∈ Γ (u) ⊆ V , and let i ∈ [R1].
Let X i,Yi = {±1}π

−1
v,u(i) and let Zi,Wi = {±1}π

−1

v′,u(i).
For every i ∈ [R1] we will have a distribution Hiε,u,v,v′
on Ωiu,v,v′ = X i × Yi × Zi ×Wi. We think of this space
as a correlated space in the sense of Mossel [14], written(
Ωiu,v,v′ ;Hiε,u,v,v′

)
.

We define Hε,u,v,v′ to be the product distribution
Hε,u,v,v′ =

⊗R1

i=1Hiε,u,v,v′ over the domain

Ωu,v,v′ =

R1∏
i=1

(
X i × Yi ×Zi ×Wi

) ∼=
(
R1∏
i=1

X i
)
×

(
R1∏
i=1

Yi
)
×

(
R1∏
i=1

Zi
)
×

(
R1∏
i=1

Wi

)
.

Again, we think of this space as a correlated space
(Ωu,v,v′ ;Hε,u,v,v′).

1) Our Noise Distribution N : In order to define the dis-
tributions Hiε,u,v,v′ , we use the following noise distribution.
The distribution Nε (D) generates a 2D-bits string x, such
that every coordinate is 1 (noisy) with probability ε, but for
every j ∈ [D] it is never the case that both xj and xj+D
are 1.

Definition III.2. Let ε ∈
[
0, 1

2

]
and D ∈ N. The distribution

Nε (D) generates x = (x1, . . . , x2D) ∈ {±1}2D as follows:
For every j ∈ [D] independently,
• With probability 1− 2ε set xj = xj+D = −1.
• With probability ε set xj = −1 and xj+D = 1.
• With probability ε set xj = 1 and xj+D = −1.

2) The Verifier’s Distribution H: Next we define the
distribution Hε,u,v,v′ to be used by the verifier: For D ∈ N
and a ∈ {±1} we denote aD = a, . . . , a (the concatenation
of a with itself D times). When given D1, D2 ∈ N, we
denote X = Y = {±1}2D1 and Z =W = {±1}2D2 .

Definition III.3. Let ε ∈
[
0, 1

2

]
and D1, D2 ∈ N. The

distribution Hε (D1, D2) generates
(x1, ..., x2D1

, y1, . . . , y2D1
, z1, . . . , z2D2

, w1, . . . , w2D2
) ∈

X × Y × Z ×W as follows:
• Select the bits x1, ..., x2D1

, z1, ..., z2D2
, as well as the

auxiliary bit a, independently and uniformly at random.
• Select the auxiliary bits y′1, . . . , y

′
2D1

according to the
distribution Nε (D1).
Select the auxiliary bits w′1, . . . , w

′
2D2

according to the
distribution Nε (D2).
(x1, . . . , x2D1

, z1, . . . , z2D2
, a, y′1, . . . , y

′
D1
, w′1, . . . , w

′
D2

are all independent).
• Set y = −x

(
a2D1 ∧ y′

)
and w = −z

((
−a2D2

)
∧ w′

)
.

That is, for j ∈ [2D1] set yj = −xj
(
a ∧ y′j

)
, and for

j ∈ [2D2] set wj = −zj
(
(−a) ∧ w′j

)
.

For i ∈ [R1] we define Hiε,u,v,v′ = Hε (di,u,v, di,u,v′)

where di,u,v =
∣∣π−1
v,u (i)

∣∣ and di,u,v′ =
∣∣∣π−1
v′,u (i)

∣∣∣. Observe
that Hiε,u,v,v′ can be thought of as simply a distribution on(
{±1}di,v,u

)2

×
(
{±1}di,u,v′

)2

. As mentioned above, the

verifier’s distribution is Hε,u,v,v′ =
⊕R1

i=1Hiε,u,v,v′ .

C. 4LIN Completeness

In this section we prove the completeness property of
Lemma III.1. That is, we show that if there exists a satisfying
assignment for LC′, then there exist two proofs that together
cover the tests of Ver.

Proof of Lemma III.1 (Completeness) Let L be a satis-
fying assignment for LC′. We construct the two proofs
P = {fv1 }v∈V and Q = {fv2 }v∈V for Ver using the
assignments L and L + R2 (respectively). That is, fv1 , f

v
2 :

{±1}2R2 → {±1} satisfy fv1 = χL(v) and fv2 = χL(v)+R2
.

Assume that the verifier selects the vertices u ∈ U and
v, v′ ∈ V . Denote i = L (u), j = L (v) and j′ = L (v′).
Recall that since L is a satisfying assignment it holds that
πv,u (j) = πv′,u (j′) = i. Let (x, y, z, w) be a possible draw
from the distribution Hε,u,v,v′ , drawn with Hiε,u,v,v′ using
the auxiliary bit ai. Note that the tuple (x, y, z, w) induces
a test “f (x) f (y) g (z) g (w) = −1”. For ` ∈ {1, 2}, denote
f` = fv` and g` = fv

′

` . Observe that:
• If ai = 1: Then f` (x) 6= f` (y) (for example, f1 (x) =
xj 6= −xj

(
ai ∧ y′j

)
= yj = f1 (y)). If additionally

w′j′ = −1 then g1 (z) = g1 (w), and if additionally
w′j′+R2

= −1 then g2 (z) = g2 (w).
• If ai = −1: Then g` (z) 6= g` (w) (for example,
g1 (z) = zj′ 6= −zj′

(
(−ai) ∧ w′j′

)
= wj′ = g1 (w)).

If additionally y′j = −1 then f1 (x) = f1 (y), and if
additionally y′j+R2

= −1 then f2 (x) = f2 (y).
The above implies that P satisfies the test (x, y, z, w), unless
(ai = 1 and w′j′ = 1) or (ai = −1 and y′j = 1). Similarly, Q
satisfies the test (x, y, z, w), unless (ai = 1 and w′j′+R2

= 1)
or (ai = −1 and y′j+R2

= 1). We conclude that each of the
proofs P and Q is accepted with probability 1− ε.

We now show that at least one of the proofs P and Q
satisfies the test (x, y, z, w). We assume that P does not
satisfy the test and show that Q does. Assume without loss
of generality that ai = 1. Since P does not satisfy the test it
must hold that w′j′ = 1. But since w′ is selected according
to the distribution Nε (R2), it cannot be the case that both
w′j′ and w′j′+R2

are 1, thus w′j′+R2
= −1. Since ai = 1, this

implies g2 (z) = g2 (w) and f2 (x) 6= f2 (y). We conclude
that Q satisfies the test (x, y, z, w) and the assertion follows.

�

IV. COVERING DICTATORSHIP TEST FOR GENERAL
PREDICATES

In this section we develop a general framework for
covering dictatorship tests using a given predicate ϕ, for
a large subset of the predicates ϕ /∈ O. In particular, in
Section IV-A we prove Theorem 2. In Section IV-B we prove
a more general version of Theorem 2 (see Lemma IV.6),
offering a dictatorship test in the multi-function setting. The
general version is used in Section V to obtain a conditional
characterization of covering hard predicates.

A. Single Function Dictatorship Test

In this subsection we assume that ϕ and η are as in
Theorem 2, and construct a ϕ-based covering dictatorship
test DICT1, using the distribution η. The test assumes to
have an oracle access to the function f : {±1}2n → {±1}
being tested.

Roughly speaking, we show that our dictatorship test
satisfies the following properties: There exist two dictator-
ships f and g that together cover all the tests made by
DICT1. However, any constant number of functions whose
every product is “far” from a dictatorship do not cover all the

tests made by DICT1. In other words, if a constant number
of functions cover all the tests, then there is a subset of these
functions whose product is “close” to a dictatorship.

1) The Test: Our dictatorship test uses the distribu-
tion Dε,η that is specified next. Let us first define the
following noisy version of η:

Definition IV.1. Let ε ∈ [0, 1], let η be a distribution over
{±1}t, and let U be the uniform distribution over {±1}t.
Define the distribution η′ε generating y ∈ {±1}t as follows:
∀y : η′ε (y) = (1− ε) η (y) + ε · U (y) . That is, in order to
draw a t-bits string y from η′ε: With probability 1−ε draw y
from η, and with probability ε draw a random y.

Definition IV.2. Let ε ∈ [0, 1], and let η be a distribution
over {±1}t. Define the distribution Dε,η generating w =

(y, z) ∈
(
{±1}t

)2

as follows:

∀ (y, z) : Dε,η (y, z) =
1

2
η (y) η′ε (z) +

1

2
η′ε (y) η (z) .

That is, in order to draw a pair (y, z) of t-bits strings
from Dε,η: With probability 1

2 draw y from η and z from η′ε,
and with probability 1

2 draw y from η′ε and z from η.

Our dictatorship test is found in Figure 2. For a string si,
we use the notation si,j to indicate the jth coordinate of si.

Algorithm 2 DICT1fε

• Select w1 = (y1, z1) , . . . , wn = (yn, zn) ∈
(
{±1}t

)2

according to the distribution Dε,η .
• For i ∈ [t], let xi = y1,i, . . . , yn,i, z1,i, . . . , zn,i ∈
{±1}2n.

• Accept iff ϕ (f (x1) , . . . , f (xt)) = −1.

It will be convenient for us to view the dictatorship test in
a matrix notation. For a matrix M , we denote by Mi the ith

row of M , and by M j the jth column of M . Consider the
following 2n×t matrix M : The first n rows of the matrix are
y1, . . . , yn, that is M1 = y1, . . . ,Mn = yn. The following
n rows are z1, . . . , zn, that is Mn+1 = z1, . . . ,M2n =
zn. Note that the t columns of the obtained matrix are
x1, . . . , xt, that is M1 = x1, . . . ,M

t = xt.
2) Definitions: In order to analyze the dictatorship test

we need the following definitions: Let ε ∈ (0, 1), k ∈ N and
let F = {f1, . . . , fk} be a set of functions f` : {±1}2n →
{±1}.

We denote by Rej
(
DICT1Fε

)
the indicator random vari-

able for the rejection of the set P by DICT1ε. That is,
Rej

(
DICT1Fε

)
is 1 if none of the functions f` in F passes

the test selected by DICT1, and 0 if there exists a function f`
in F that passes the test.

For K ⊆ [k], we define the product function fK :
{±1}2n → {±1} by fK =

∏
`∈K f`. The function fφ is

the all 1’s functions, i.e., for every x ∈ {±1}2n it holds that
fφ (x) = 1.

We say that a function is regular if none of its coordinates
has high influence:

Definition IV.3 (Regularity). Let d ∈ N, τ ∈ [0, 1],
and let f : {±1}n → {±1} be a function. We say that
f is (d, τ)-regular, if maxj∈[n]

{
Inf≤dj (f)

}
≤ τ. Let

F = {f1, . . . , fk} be a set of functions f` : {±1}n → {±1}.
We say that F is (d, τ)-regular if for every subset K ⊆ [k]
it holds that fK is (d, τ)-regular.

3) Test Analysis: We are now ready to state our result
regarding DICT1. The following lemma clearly implies
Theorem 2.

Lemma IV.4. Let ϕ : {±1}t → {±1} be a predicate
satisfying ϕ /∈ O. Assume that there exists a balanced,
pairwise independent distribution η on the support of ϕ.
Then, DICT1 satisfies the following properties:

• Completeness: For any ε ∈ (0, 1) the following holds.
Let j ∈ [n] and let f, g : {±1}2n → {±1} be the two
dictatorships f = χj and g = χj+n. Then

Pr
[
Rej

(
DICT1{f,g}ε

)]
= 0.

In particular, there exist two dictatorships that cover
all the tests performed by DICT1.
Furthermore, each of the functions f and g is accepted
by DICT1ε with probability 1− ε

2 .
• Soundness: For any ε ∈ (0, 1) and k ∈ N, there

exist constants d ∈ N and τ > 0 that only depend
on ε, t and k, such that the following holds. Let
F = {f1, . . . , fk} be a set of functions f` : {±1}2n →
{±1}. Assume that F is (d, τ)-regular. Then

Pr
[
Rej

(
DICT1Fε

)]
>

1

210kt
.

In particular, if a set of a constant number of functions
covers all the tests performed by DICT1, then the set
is not (d, τ)-regular.

B. General Dictatorship Test

In this section we offer a more general covering dic-
tatorship test. Instead of getting oracle access to a single
function f : {±1}2n → {±1}, the general dictatorship test
gets access to a family of functions F =

{
f1, . . . , fr

}
,

r ≥ t ∈ N, f : {±1}2n → {±1}. Intuitively, the test aims at
checking whether all the functions f1, . . . , fr are the same
dictatorship.

The general dictatorship test is used in Section V. Roughly
speaking, the f1, . . . , fr functions considered by Section V
are the long code encodings of the r � t neighbors
v1, . . . , vr of a single vertex u in a label cover instance.

1) The Test: Our general dictatorship test DICT is found
in Figure 3. It is easy to see that if F contains r copies of
the same function f , i.e., f1 = · · · = fr = f , then DICTFε
operates the same as DICT1fε .

Algorithm 3 DICT
F={f1,...,fr}
ε

• Select w1 = (y1, z1) , . . . , wn = (yn, zn) ∈
(
{±1}t

)2

according to the distribution Dε,η .
• For i ∈ [t], let xi = y1,i, . . . , yn,i, z1,i, . . . , zn,i ∈
{±1}2n.

• Select a random set of t different indices I =
{i1, . . . , it} ⊆ [r]
(selection with no repetitions).

• Accept iff ϕ
(
f i1 (x1) , . . . , f it (xt)

)
= −1.

2) Definitions: In order to analyze the dictatorship test
we need the following definitions: Let ε ∈ (0, 1), k, r ∈ N,
and let F be a set of sets of functions F = {F1, . . . , Fk},
F` =

{
f1
` , . . . , f

r
`

}
, f i` : {±1}2n → {±1}.

We denote by Rej
(
DICTFε

)
the indicator random vari-

able for the rejection of the set F by DICT. That is,
Rej

(
DICTFε

)
is 1 if none of the sets F` in F passes the

test selected by DICT, and 0 if there exists a set F` in F
that passes the test.

We define the cross influence of a pair of function as
follows:

Definition IV.5 (Cross Influence). Let d ∈ N, and let
f, g : {±1}n → {±1} be a pair of function. We denote
by XInfd (f, g) the d-cross influence of f and g:

XInfd (f, g) = max
j∈[n]

{
min

{
Inf≤dj (g) , Inf≤dj (f)

}}
.

For i ∈ [r] and K ⊆ [k] we define the product function
f iK : {±1}2n → {±1} by f iK =

∏
`∈K f

i
K . The function

f iφ is the all 1’s functions, i.e., for every x ∈ {±1}2n it
holds that f iφ (x) = 1.

Let d ∈ N and τ ∈ [0, 1]. Let (i, i′) ∈ [r]
2, i 6= i′,

be a pair of indices. We say that (i, i′) is (d, τ,F)-cross
regular, if for every two sets K,K ′ ⊆ [k] it holds that
XInfd

(
f iK , f

i′

K′

)
≤ τ. Let I ⊆ [r] be a set of indices.

We say I is (d, τ,F)-cross regular if every pair (i, i′) ∈ I2,
i 6= i′, is (d, τ,F)-cross regular.

3) Test Analysis: We are now ready to state our result
regarding DICT:

Lemma IV.6. Let ϕ : {±1}t → {±1} be a predicate
satisfying ϕ /∈ O. Assume that there exists a balanced,
pairwise independent distribution η on the support of ϕ.
Then, DICT satisfies the following properties:
• Completeness: For any ε ∈ (0, 1) the following holds.

Let j ∈ [n] and let f i, gi : {±1}2n → {±1}, i ∈ [r],

be the following functions f1 = · · · = fr = χj ,
g1 = · · · = gr = χj+n. Let F =

{
f1, . . . , fr

}
and

G =
{
g1, . . . , gr

}
. Then

Pr
[
Rej

(
DICT{F,G}ε

)]
= 0.

Furthermore, each of the sets F and G is accepted by
DICTε with probability 1− ε

2 .
• Soundness: For any ε ∈ (0, 1) and k ∈ N, there exist
r, d ∈ N and τ > 0 that only depend on ε, t, and k,
such that the following holds. Let F be a set of sets
of functions F = {F1, . . . , Fk}, F` =

{
f1
` , . . . , f

r
`

}
,

f i` : {±1}2n → {±1}. Let α = 1
210kt , and assume that

at least 1 − α fraction of the t-elements sets I ⊆ [r]
are (d, τ,F)-cross regular. Then

Pr
[
Rej

(
DICTFε

)]
>

1

210kt
.

It is easy to see that Lemma IV.4 is a special case of
Lemma IV.6. Thus, we will only prove Lemma IV.6. The
proof of the completeness part of Lemma IV.6 can be found
in Section IV-C, the proof of the soundness part is omitted.
For the rest of the text we fix t, ε, ϕ and η. We omit the ε
and η sub-indices and write DICT = DICTε, η′ = η′ε and
D = Dε,η .

C. Completeness

Proof of Lemma IV.6 (Completeness) Recall the matrix
M defined at the end of Subsection IV-A1, after the algo-
rithm DICT1. For i ∈ [t], it holds that xi is the ith column
of M . For j ∈ [n] it holds that yj is the jth row of M , and
zj is row number j + n of M . Also recall that there exists
j ∈ [n] such that for every i ∈ [r] it holds that f i = χj and
gi = χj+n.

When running DICTF we compare the
following value to −1: ϕ

(
f i1 (x1) , ..., f it (xt)

)
=

ϕ (χj (x1) , ..., χj (xt)) = ϕ (Mj,1, ...,Mj,t) = ϕ (Mj) =
ϕ (yj) . When running DICTG we compare the
following value to −1: ϕ

(
gi1 (x1) , ..., git (xt)

)
=

ϕ (χj+n (x1) , ..., χj+n (xt)) = ϕ (Mj+n,1, ...,Mj+n,t) =
ϕ (Mj+n) = ϕ (zj)

Recall that (yj , zj) was drawn from D. Thus, either yj
or zj was drawn from η, implying that at least one of them is
in support of ϕ. Hence, either ϕ (yj) = −1 or ϕ (zj) = −1,
and at least one of F and G is accepted by DICT.

Moreover, observe that F is only rejected by DICT if
yj is not in the support of ϕ. This can only happen if D
samples yi using η′, and η′ samples yi using the uniform
distribution (instead of using η). The probability of this event
is ε

2 . Therefore, F (and similarly also G) is accepted with
probability at least 1− ε

2 . �

V. CHARACTERIZATION OF COVERING-HARD
PREDICATES

In this section we prove covering unique games hardness
for a large subset of the predicates ϕ /∈ O. Formally, we
prove Theorem 4 under Conjecture 3 (covering UGC).

A. Discussion of our Covering Unique Games Conjecture
We would like to follow the lines of [2] and get a

conditional hardness result using our dictatorship test. A
natural attempt at formulating a covering conjecture would
be to require in the yes case the existence of c assignments
that together cover all the edges of the given label cover
instance, where c is some absolute constant. Unfortunately,
we were only able to derive a hardness result using a stronger
version of the conjecture. Specifically, in the yes case we
require the existence of c assignments such that for every
vertex u ∈ U , at least one of the assignments satisfies all
the edges touching u. We mention that Khot and Regev [12]
show that a similar conjecture in the max-CSP setting is
equivalent to the unique games conjecture.

Our conjecture is clearly false with c = 1, but as far as we
know may be true with even c = 2. The conjecture is incom-
parable to the unique games conjecture (our completeness
does not require any single assignment to satisfy a large
fraction of edges). However it clearly implies the unique
games conjecture with completeness 1

c (instead of 1− ε).
B. PCP Verifier (Proof of Theorem 4)

As usual, we prove Theorem 4 by reduction from the cov-
ering unique games conjecture (Conjecture 3). Specifically,
we assume to be given a bipartite label cover instance LC′
with permutation constraints, and construct a PCP verifier
that checks proofs for LC′ by only performing ϕ-tests.

Let LC′ = (U, V,E,R,R,Π′),
Π′ =

{
π′v,u : [R]→ [R]

}
(u,v)∈E , be the given

instance, and let LC = (U, V,E, 2R, 2R,Π),
Π = {πv,u : [2R]→ [2R]}(u,v)∈E , be the unique
games duplicated-LC′ instance (see Section II-B3). A
proof P for LC′ consists of a collection of truth tables of
boolean functions, one for each vertex v ∈ V . Formally,
P = (fv)v∈V where fv : {±1}2R → {±1}. The function fv
is, supposedly, the long code encoding of the label assigned
to v by a satisfying assignment for LC.

Our verifier’s algorithm for checking the proof P is found
in Figure 4. The algorithm uses the following definition. For
a function f : {±1}2R → {±1} and a permutation π :
[2R]→ [2R] we define the function fπ : {±1}2R → {±1}
by fπ (x) = f

(
xπ(1), . . . , xπ(2R)

)
.

Algorithm 4 VerPε

• Randomly select a vertex u ∈R U .
• Run DICTFε for F = {fvπv,u}v∈Γ(u),

where fv is the function in P associated with vertex v.

As before, we define Rej
(
VerPε

)
to be the indicator

random variable for the rejection of the set of proofs P =
{P1, ..., Pk} by Verε. Theorem 4 is an easy corollary of the
following lemma:

Lemma V.1. Let c ∈ N be the constant promised by
the covering unique games conjecture (Conjecture 3). Let
ϕ : {±1}t → {±1} be a predicate satisfying ϕ /∈ O.
Assume that there exists a balanced, pairwise independent
distribution η on the support of ϕ. Then, Ver satisfies the
following properties:

• Completeness: Assume that there exist c assignments
such that for every vertex u ∈ U , at least one of the
assignments satisfies all the edges touching u. Then,
there exists a set P of at most 2c proofs such that

Pr
[
Rej

(
VerPε

)]
= 0.

In particular, if c assignments cover all the edges of
LC′ (in the above sense), then there are 2c proofs that
together cover all the tests performed by Verε.

• Soundness: For a sufficiently small ε > 0 and k ∈ N,
there exists a constant ξ > 0 that only depends on ε, t
and k, such that the following holds: Assume that there
exists a set P of at most k proofs such that

Pr
[
Rej

(
VerPε

)]
<

1

2 · 210kt
.

Then, OPT
(
LC′
)
> ξ.

In particular, if OPT
(
LC′
)
≤ ξ, then there is no

constant number of proofs that together cover all the
tests performed by Verε.

Proof of Lemma V.1 (Completeness) Let L1, . . . , Lc :
U ∪ V → [R] be the c promised assignments for LC′.
Specifically, for every u ∈ U there exists an assignment
L`, ` ∈ [c], that satisfies all the edges touching u.

For each ` ∈ [c], we construct the two proofs P` =
{fv` }v∈V and Q` = {gv` }v∈V for Ver using the assignments
L` and L` + R (respectively). That is, fv` , g

v
` : {±1}2R →

{±1} satisfy fv` = χL`(v) and gv` = χL`(v)+R. We denote
P = {P`, Q`}`∈[c]. We next show that VerP always accepts.

Fix a vertex u ∈ U , and assume that u was selected
during the execution of Ver. Let L`, ` ∈ [c], be an
assignment that satisfies all the edges touching u. When
running Ver{P`,Q`}, the verifier runs DICT{F`,u,G`,u} for the
sets F`,u = {fv` πv,u}v∈Γ(u) and G`,u = {gv` πv,u}v∈Γ(u).
For every v ∈ Γ (u) it holds that fv` πv,u = χL`(v)πv,u =
χπv,u(L`(v)) = χL`(u), and gv` πv,u = χL`(v)+Rπv,u =
χπv,u(L`(v)+R) = χL`(u)+R. Using the completeness prop-
erty of Lemma IV.6, DICT{F`,u,G`,u} always accepts. This
implies that Ver{P`,Q`} accepts whenever u is chosen.
Therefore, VerP = Ver{P`,Q`}`∈[c] always accepts, and the
assertion follows. �

Proof of Lemma V.1 (Soundness) Let k ∈ N and let P
be a set k proofs P = {P1, . . . , Pk}, P` = {fv` }v∈V , fv` :

{±1}2R → {±1}, for which Pr
[
Rej

(
VerP

)]
< 1

2·210kt .
We wish to show that OPT

(
LC′
)
> ξ, for some constant ξ

that only depends on ε, t and k.
For simplicity of exposition we assume that LC′ (and

therefore also LC) is U -regular, that is ∀u, u′ ∈ U :
|Γ (u)| = |Γ (u′)| = r and that r is sufficiently large (as
required by soundness property of Lemma IV.6).

Fix a vertex u ∈ U , and let v1, . . . , vr ∈ Γ (u) be its r
neighbors. For i ∈ [r] and ` ∈ [k], denote gvi` = fvi` πvi,u.
Let Fu` = {gv1` , . . . , g

vr
` } and Fu = {Fu1 , . . . , Fuk }. It holds

that Pr
[
Rej

(
VerP

)]
= Eu∈U

[
Pr
[
Rej

(
DICTF

u
)]]

.

Since Pr
[
Rej

(
VerP

)]
< 1

2·210kt there exists a subset
U ′ ⊆ U , |U ′| ≥ 1

2 |U |, such that for every u ∈ U ′ it holds
that Pr

[
Rej

(
DICTF

u
)]
≤ 1

210kt . We call the vertices in
U ′ good vertices.

Fix a good vertex u ∈ U ′. Using the soundness property
of Lemma IV.6, for some d ∈ N and τ > 0 (functions
of ε, t and k), it holds that at least α = 1

210kt fraction of
the t-elements sets I ⊆ [r] are not (d, τ,Fu)-cross regular.
Meaning that there exists a pair (i, i′) ∈ I2, i 6= i′, that
is not (d, τ,Fu)-cross regular. We say that such a pair is
cross influential for I with respect to Fu. We call a pair
cross influential with respect to Fu, if it cross influential
with respect to Fu for at least one set I .

Denote by XInfPairsu ⊆ [r]
2 the set of cross influential

pairs with respect to Fu. Formally, XInfPairsu ={
(i, i′) ∈ [r]

2 |∃K,K ′ ⊆ [k] : XInfd
(
gviK , g

vi′
K′

)
≥ τ

}
.

We claim that the set XInfPairsu contains at least α
t2

fractions of the pairs in [r]
2. The following is a way

of choosing a random pair (i, i′) ∈ [r]
2: First select

a t-elements set I ⊆ [r], then select a random pair
(i, i′) ∈ I2. The selected set I has a cross influential pair
with probability is at least α. Each of the pairs in I is
selected with probability 1

t2 . Thus, the selected pair is cross
influential with probability at least α

t2 .
Obtaining a good labeling: We next construct a good

labeling for the duplicated label cover instance LC. Since
every assignment for LC naturally induces an assignment
for LC′ with at least the same value, the claim of the lemma
follows.

Consider the following labeling L for LC: The set of
candidate assignments for vertex v ∈ V is given by

C (v) =
{
j ∈ [2R] | ∃K ⊆ [k] : Inf≤dj (fvK) ≥ τ

}
.

Note that, using Claim II.3, |C (v)| ≤ d
τ · 2k. Define a

labeling L by picking, for each v ∈ V a label L (v)
uniformly at random from C (v) (or an arbitrary label if
C (v) is empty). For u ∈ U , randomly select v′ ∈R Γ (u)
and set L (u) to πv′,u (L (v′)).

Let (u, v) be an edge of LC, where u ∈ U ′ is good. The
probability that the edge (u, v) is satisfied by L is

Pr [L (u) = πv,u (L (v))] = Pr [πv′,u (L (v′)) = πv,u (L (v))] .

Recall that with probability at least α
t2 it holds that (v, v′) is

a cross influential pair with respect to Fu, i.e., v = vi, v′ =
vi′ , and (i, i′) ∈ XInfPairsu. Therefore, with probability
at least α

t2 , it holds that πv′,u (C (v′)) ∩ πv,u (C (v)) 6= φ.
Conclude that the edge (u, v) is satisfied with probability at
least α

t2 ·
1

|C(v)||C(v′)| ≥
α
t2

(
τ
d·2k

)2
.

Since we assume that LC is U -regular, and since |U ′| ≥
1
2 |U |, it holds that 1

2 of the edges (u, v) have u ∈ U ′.
Therefore, a random edge of LC is satisfied by L with
probability at least 1

2 ·
α
t2 ·
(

τ
d·2k

)2 ≥ τ2

d2·220kt = ξ. �

VI. HARDNESS OF APPROXIMATE COLORING AND
COVERING RANDOM CSP INSTANCES

An outstanding open question is to approximate the
number of colors required to color a given O (1)-colorable
graph or hypergraph. While it is known to be hard to color a
O (1)-colorable hypergraph with a polylogarithmic number
of colors, the best known algorithm requires a polynomial
number of colors. Thus, there is an exponential gap between
the best lower and upper bounds. In the covering language
this is almost1 equivalent to the question of approximating
the covering number of an O (1)-coverable NAE instance.
We next study this question in relation to the hardness of
random CSP instances.

In a seminal paper, Feige [5] studies the relation between
hardness of random instances of 3SAT and the hardness of
approximation problems, including some notorious problems
for which neither algorithms nor hardness are known. In
that paper he states a hypothesis about no polynomial time
algorithm being able to distinguish between a random 3SAT
and a satisfiable one. More accurately,

Hypothesis VI.1 (Feige’s Hypothesis 1 [5]). There is no
polynomial time algorithm that outputs typical for most
3CNF-CSP instances with n variables and m = ∆ · n
clauses, and never outputs typical on a satisfiable in-
stance; even when ∆ is an arbitrarily large constant inde-
pendent of n.

We formulate an analogous hypothesis about the hardness
of distinguishing between random and 2-coverable 4LIN-
CSP instances (Hypothesis 5), and a weaker hypothesis
about ϕ-CSP instances for some predicate ϕ (Hypothe-
sis VI.2). We prove that both of these hypotheses imply the
hardness of approximate coloring of hypergraphs. We show
a direct connection between the density ∆ in the hypothesis
and the inapproximability factor in the result. When our

1It is not exactly equivalent since the NAE formulation allows negations
of variables whereas the coloring formulation does not.

4LIN hypothesis is pushed to extreme, it implies hardness
of approximate coloring to within polynomial factors.

Hypothesis VI.2 (Covering ϕ Hypothesis, with density
parameter ∆). There are some universal constants t, c ∈ N
and a predicate ϕ : {±1}t → {±1} such that no polynomial
time algorithm outputs typical for most ϕ-CSP instances
with n variables and m = ∆ · n clauses, and never outputs
typical for a c-coverable ϕ-CSP instance.

Our main theorem of this section is Theorem VI.3 (gen-
eralized restatement of Theorem 6):

Theorem VI.3. If Hypothesis VI.2 holds with parameters
c, t and density ∆ such that c � log ∆ then it is hard to
distinguish if a given t-uniform hypergraph is 2c-colorable
or ∆Ω(1) colorable.

In particular, Hypothesis 5 with density parameter ∆ =
nδ for some positive δ > 0 implies that it is hard to decide
if a 4-uniform hypergraph is 4-colorable or requires at least
a polynomial number of colors.

The main ingredient in the proof of Theorem VI.3 is the
following claim that shows that the covering number of a
random ϕ-CSP is proportional to its log-density, as long as
ϕ /∈ O. (Recall that for any ϕ ∈ O, the covering number of
any ϕ-CSP is at most 2). The theorem’s proof is omitted.

Claim VI.4. Let ϕ /∈ O and let C be a random instance of
ϕ-CSP, with n variables and m = ∆ · n constraints. Then
ν (C) ≥ Ω (log ∆), except with probability exponentially
small in n.

Proof Let us first assume that ϕ is the NAE predicate on t
variables and that all occurrences of ϕ are unsigned, i.e.,
without negations of variables. Fix an CSP instance C, and
let L1, . . . , Lk ∈ {±1}n be any set of k ∈ N assignments
for C. It is not hard to see that there must be a subset S ⊆ [n],
such that each assignment L`, ` ∈ [k], is constant on S
(either all 1s or all −1s), and such that |S| ≥ n · 2−k.
The reason is that each of the assignments L` partitions
the n variables into two sets: Variables that are assigned the
value 1, and variable that are assigned the value −1.

If the given instance C has a constraint fully contained
in S then L1, . . . , Lk do not cover it. The probability that
a randomly chosen constraint is contained in a set of size
n · 2−k is 2−kt where t is the arity of the constraint. The
probability that out of m constraints of C none landed inside
S is

(
1− 2−kt

)m ≈ exp
(−m

2kt

)
, and if we multiply this by

the number 2kn of possibilities to choose k assignments and
using a union bound we get

Pr
I

[ν (I) ≤ k] ≤ exp

(
−m
2kt

)
·2kn = exp

(
−n ·

(
∆

2kt
− k
))

.

Clearly if ∆ > 22kt then ∆
2kt − k > 1 which causes the

above probability to be exponentially small. In our case t is

fixed, and so this proves that ν (C) ≥ Ω (log ∆) with high
probability.

It remains to justify the assumption that ϕ is the NAE
predicate. This simply follows from the fact that for every
ϕ /∈ O there is some signed-NAE predicate that contains it,
see Claim II.1. The unsigned assumption means that we’ve
proven that even covering the unsigned part of the instance
is already hard, assuming that there are many unsigned
constraints. But this is indeed the case as the number of
unsigned constraints is expected to be m · 2−t. �

REFERENCES

[1] S. Arora, E. Chlamtac, and M. Charikar, “New approximation
guarantee for chromatic number,” in STOC, 2006, pp. 215–
224.

[2] P. Austrin and E. Mossel, “Approximation resistant predicates
from pairwise independence,” Computational Complexity,
vol. 18, no. 2, pp. 249–271, 2009.

[3] A. Blum and D. R. Karger, “An Õ
(
n3/14

)
-coloring algo-

rithm for 3-colorable graphs,” Information Processing Letters,
vol. 61, no. 1, pp. 49–53, 1997.

[4] I. Dinur, O. Regev, and C. D. Smyth, “The hardness of 3-
uniform hypergraph coloring,” Combinatorica, vol. 25, no. 5,
pp. 519–535, 2005.

[5] U. Feige, “Relations between average case complexity and
approximation complexity,” in STOC, 2002, pp. 534–543.

[6] U. Feige and E. Ofek, “Easily refutable subformulas of large
random 3CNF formulas,” Theory of Computing, vol. 3, no. 1,
pp. 25–43, 2007.

[7] V. Guruswami, J. Håstad, and M. Sudan, “Hardness of
approximate hypergraph coloring,” SIAM Journal on Com-
puting, vol. 31, no. 6, pp. 1663–1686, 2002.

[8] J. Håstad, “Some optimal inapproximability results,” Journal
of the ACM, vol. 48, no. 4, pp. 798–859, 2001.

[9] D. R. Karger, R. Motwani, and M. Sudan, “Approximate
graph coloring by semidefinite programming,” Journal of the
ACM, vol. 45, no. 2, pp. 246–265, 1998.

[10] S. Khot, “Hardness results for approximate hypergraph col-
oring,” in STOC, 2002, pp. 351–359.

[11] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, “Optimal
inapproximability results for max-cut and other 2-variable
CSPs?” SIAM Journal on Computing, vol. 37, no. 1, pp. 319–
357, 2007.

[12] S. Khot and O. Regev, “Vertex cover might be hard to
approximate to within 2-epsilon,” Journal of Computer and
System Sciences, vol. 74, no. 3, pp. 335–349, 2008.

[13] S. Khot and R. Saket, “A 3-query non-adaptive pcp with
perfect completeness,” in IEEE Conference on Computational
Complexity, 2006, pp. 159–169.

[14] E. Mossel, “Gaussian bounds for noise correlation of func-
tions and tight analysis of long codes,” in FOCS, 2008, pp.
156–165.

[15] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, “Noise
stability of functions with low influences: invariance and
optimality,” in FOCS, 2005, pp. 21–30.

[16] R. O’Donnell and J. Wright, “A new point of NP-hardness
for unique games,” in STOC, 2012, pp. 289–306.

[17] R. O’Donnell and Y. Wu, “Conditional hardness for satisfiable
3-CSPs,” in STOC, 2009, pp. 493–502.

