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Abstract

A family J of subsets of {1, . . . , n} is called a j-junta if there exists J ⊆ {1, . . . , n}, with
|J | = j, such that the membership of a set S in J depends only on S ∩ J .

In this paper we provide a simple description of intersecting families of sets. Let n and
k be positive integers with k < n/2, and let A be a family of pairwise intersecting subsets of
{1, . . . , n}, all of size k. We show that such a family is essentially contained in a j-junta J where
j does not depend on n but only on the ratio k/n and on the interpretation of “essentially”.

When k = o(n) we prove that every intersecting family of k-sets is almost contained in a
dictatorship, a 1-junta (which by the Erdős-Ko-Rado theorem is a maximal intersecting family):
for any such intersecting family A there exists an element i ∈ {1, . . . , n} such that the number
of sets in A that do not contain i is of order

(
n−2
k−2

)
(which is approximately k

n−k times the size
of a maximal intersecting family).

Our methods combine traditional combinatorics with results stemming from the theory of
Boolean functions and discrete Fourier analysis.

1 Introduction

1.1 Notation

Let us begin with some notation. Let [n] = {1, 2, . . . n} and
([n]

k

)
= {T ∈ [n] : |T | = k}. We shall

refer to the elements of
([n]

k

)
simply as k-sets. If J is a ground set we denote the family of all subsets

of J by 2J . General families of subsets of [n] are denoted by script letters A,B,J , etc. and subsets
of [n] by capital letters S, T, etc. Two sets will be called intersecting if their intersection is nonempty
and a family of sets will be called intersecting if its elements are pairwise intersecting. Two families
A and B will be called cross intersecting if every member of A intersects every member of B. The
following definition is important enough in this paper to deserve separate indentation.

Definition 1.1 A family of sets J will be called a j-junta if there exists a subset J ⊆ [n] with |J | = j such
that membership of a set in A is determined only by its intersection with J , in other words there exists a
family J ∗ ⊆ 2J such that J = {T ⊆ [n] : (T ∩ J) ∈ J ∗}. In this case we will say that J is the junta
generated by J ∗.
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1.2 Results

Questions regarding a family of sets given some simple information regarding their intersection
pattern are among the most fundamental in combinatorics. Perhaps the first and most basic of
these questions is answered by the Erdős-Ko-Rado theorem [4] which deals with an intersecting
family of sets. If A ⊂

([n]
k

)
is intersecting, with k ≤ n/2, the EKR theorem states that A is of size

no more than
(
n−1
k−1

)
and that if k is strictly less than n/2 this bound is attained only by a family of

all k-subsets containing some fixed element. Many other theorems in extremal set theory provide
such elegant characterizations of the largest possible family of sets given certain information on
their intersections. A notable prototype of such a theorem is the Ahlswede-Khachatrian theorem
[1] which deals with a family of k-sets given that the pairwise intersections of its elements are of
size at least r for some fixed integer r. There, once again, the extremal families are j-juntas where
j can be bounded by some function of r and k/n.

The principal principle that we prove in this paper shows that such results should come as no
surprise since (roughly speaking) every intersecting family of sets is contained in a family with
such a simple description, namely every intersecting family is essentially contained in a junta.

To make this more concrete, we want to state a theorem that says that for every intersecting
family A ⊂

([n]
k

)
and for every ε > 0 there exists an integer j which depends only on ε and on

k/n, a set J ⊂ [n] with |J | = j and a non-trivial family J ∗ ⊂ 2J so that if J is the junta generated
by J ∗ then |A \ J | ≤ ε

(
n
k

)
. However, when k = pn for constant p, this holds rather trivially by

taking a very large junta: if we take j � logk/n(ε), take an arbitrary J ⊂ [n] of size j, and define
J ∗ = 2J \ ∅ and J the generated junta this already implies |A \ J | < ε

(
n
k

)
, for simple statistical

reasons that have nothing to do with the structure of A.
Such a trivial hindrance to providing an accurate description of intersecting families does not

exist for k = o(n) and at this point we break our treatment of intersecting families contained in([n]
k

)
into two cases: k = pn for some constant 0 < p < 1/2 and k = o(n).

The case k = pn, p constant, 0 < p < 1
2 . As illustrated above, finding a junta that contains

our intersecting family up to an ε fraction is hardly an accomplishment. It would be far more
gratifying if we could find a j-junta J which is itself intersecting or, in other words, if we could
guarantee that J ∗ is an intersecting family. This would, in a sense, provide a simple explanation
to the fact that A is intersecting. We conjecture that this in fact is true, see Conjecture 1.3 below.
But for now we make do with proving that J ∗ is almost-intersecting. The definition of being
almost-intersecting is subtle and we defer it to Section 3.2. Our main theorem in this section is as
follows,

Theorem 1.2 There exists a function j(p, ε) such that the following holds. Let 0 < p < 1/2 and let ε > 0.
Let j = j(ε, p) and let k and n be positive integers with j � k = pn. Then for every intersecting family
A ⊂

([n]
k

)
there exists a j-junta J generated by a family J ∗ such that

1. |A \ J | ≤ ε
(
n
k

)
.

2. J ∗ is ε-almost-intersecting in µp({0, 1}j).

In other words there is a simple (almost) necessary condition for a set to belong to A, where the
condition depends only on j elements. Note that finding such a simple sufficient condition is
hopeless since one can take arbitrarily complicated subfamilies of A (e.g. a random subfamily)
which, of course, will still be intersecting families. As stated above we hope that Theorem 1.2 can
be improved:
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Conjecture 1.3 The family J ∗ guaranteed by Theorem 1.2 can be taken to be an intersecting family.

Since the Erdős-Ko-Rado theorem breaks down when k > n/2 it comes as no surprise that the
function j(ε, p) guaranteed by Theorem 1.2 explodes as p approaches 1/2. However when p ap-
proaches 0 the situation is simpler.

The case k = o(n). As k
n goes to 0, i.e. k = o(n), we can state a theorem that is perhaps more

satisfying and surprising. It turns out that when k is small compared to n then every intersect-
ing family of k-sets is practically contained in a maximal intersecting family, a family of all sets
containing one fixed element. To better appreciate the results that follow let us first calibrate the
quantities that appear in the statements. If k = o(n) then, denoting p = k/n,(

n

k

)
�

(
n− 1
k − 1

)
�

(
n− 2
k − 2

)
� . . .�

(
n− r

k − r

)
,

as (n−r
k−r)
(n

k)
≈ pr. The following theorems hold for any natural numbers k < n/2 but are only interest-

ing when k = o(n) otherwise the hidden constants can be set to make the theorems hold trivially.
As usual we denote p = k/n.

Theorem 1.4 There exists a constant c(1) such that if A ⊂
([n]

k

)
is an intersecting family then there exists

an element i ∈ [n] such that all but c(1) ·
(
n−2
k−2

)
of the sets in A contain i.

In other words every intersecting family is practically contained in a maximal intersecting family.
Remarks:

• Note that up to the value of c(1) the theorem is sharp as shown by the example of all k-sets
that contain at least two elements out of a given set of three elements.

• Theorem 1.4 is a special case of Theorem 1.5 below, but we state it separately because we find
it to be aesthetically pleasing that the junta involved in this case is a dictatorship, a 1-junta.

The following theorem offers a higher degree of precision at the inevitable price of needing a
larger junta to capture the intersecting family.

Theorem 1.5 There exists functions j(r), c(r) such that for any integers 1 < j(r) < k < n/2, ifA ⊂
([n]

k

)
is an intersecting family with |A| > c(r) ·

(n−(r+1)
k−(r+1)

)
then there exists an intersecting j-junta J with

j ≤ j(r) and

|A \ J | ≤ c(r) ·
(

n− (r + 1)
k − (r + 1)

)
= O

(
pr+1 ·

(
n

k

))
.

Note that unlike the k = pn case we are able to ensure that the junta J is in fact intersecting.
The above two theorems also have cross-intersecting-families versions. Although the simple

versions of the theorems are slightly more concise we state the cross intersecting versions not
only because they are generalizations but because we actually need them for our induction based
proofs.

Theorem 1.6 There exists a constant c(1) such that if k + ` < n and A ⊂
([n]

k

)
with |A| > c(1) ·

(
n−2
k−2

)
and B ⊂

([n]
`

)
with |B| > c(1) ·

(
n−2
`−2

)
are cross intersecting families then there exists an element i ∈ [n]

such that all but c(1) ·
(
n−2
k−2

)
of the sets in A contain i, and similarly, all but c(1) ·

(
n−2
`−2

)
of the sets in B

contain i.
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Theorem 1.7 There exist functions j(r), c(r) ≥ 1 such that the following holds. Let n, k, ` ∈ N with
1 < j(r) < ` ≤ k and k + ` < n and let A ⊂

([n]
k

)
and B ⊂

([n]
`

)
be cross-intersecting families such that

|A| > c(r) ·
(n−(r+1)
k−(r+1)

)
and |B| > c(r) ·

(n−(r+1)
`−(r+1)

)
. Then there exist cross-intersecting families J and I

such that

1. J and I are both j-juntas with j ≤ j(r).

2. |A \ J | ≤ c(r) ·
(n−(r+1)
k−(r+1)

)
and |B \ I| ≤ c(r) ·

(n−(r+1)
`−(r+1)

)
.

Remark: Clearly the juntas J and I cannot be trivial, i.e. neither of them is equal to ∅ or 2[n]. They
cannot be equal to ∅ since A and B are too large to be approximated by the empty family, and
neither of them can be 2[n] since 2[n] cross intersects only with the empty family. The other side
of this coin is that without assuming the lower bound on the size of ,say, A we can say nothing
interesting about the structure of B because in this case we may approximately capture A by the
empty family and B by 2[n].

1.3 Methods

Although the theorems stated in this paper deal with families of sets restricted to a fixed size
the starting point of our proofs is always embedding them in the discrete cube {0, 1}n (identified
with 2[n]) endowed with a product measure, and considering the filter generated by them. The
measure we choose is in some cases concentrated (by Chernoff inequalities) near the layer of the
cube where the original family of sets resides.

We will rely on some results that are proven via discrete harmonic analysis on {0, 1}n. In the
case k = pn, Theorem 1.2, our result will be a relatively simple corollary of the main result in
[2]. That, in turn, relies crucially on the relatively new invariance principle of Mossel, O’Donnell
and Oleszkiewicz, [11]. This principle enables one to deduce, under certain conditions, when two
real functions defined on a product space depend jointly in a non-negligible manner on a fixed
coordinate. This, of course, is the name of the game in the current paper: proving that a family of
sets is essentially defined by some few fixed elements.

In the case k = o(n) we need a simple condition that guarantees that a family A ⊂ 2[n] may be
approximated by a junta. This is supplied by a result from [6]. We then utilize the technique of
[3] to show that, using an appropriate measure, the condition may be fulfilled, hence there exists
an approximating junta J . Returning to the original measure that we are interested in we can no
longer deduce that J is close to A but rather that it approximately contains A, as desired.

1.4 Outline of the paper

In Section 2 we gather our main combinatorial and analytical tools stating and proving our main
lemmas. In Section 3 we then prove our main theorems: Theorems 1.6 and 1.7 in subsection 3.1
and Theorem 1.2 in subsection 3.2.

2 Preliminaries

We proceed with additional definitions. We will identify any S ⊆ [n] with its characteristic vector
s ∈ {0, 1}n defined by si = 1 if and only if i ∈ S. Hence, for any p ∈ [0, 1] we will consider the
product measure on the discrete cube to induce a measure on 2[n] defined by µp(S) = p|S|(1 −
p)n−|S| and, naturally, µp(A) =

∑
A∈A µp(A).
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If J ⊂ [n] and A ⊆ 2[n] then for every S ⊆ J we will be interested in the family AS ⊂ 2[n]\J

defined as follows.
AS = AS(J) = {T ∈ [n] \ J : (T ∪ S) ∈ A}.

A family A ⊆ 2[n] is monotone if A ∈ A and A′ ⊇ A implies A′ ∈ A. For anyA ⊆ 2[n] we define its
monotone closure A↑ to be the family

A↑ =
⋃

A∈A

{
A′ ∈ 2[n] : A′ ⊇ A

}
.

It is useful to note that if A is intersecting then so is A↑.
The upper shadow of a set A ∈

([n]
k

)
is the family of all k + 1-element sets A′ that contain A.

The upper shadow of a family of sets A ⊆
([n]

k

)
is the union of all upper shadows of its elements:

∂A =
⋃

A∈A

{
A′ ∈

(
[n]

k + 1

)
: A′ ⊃ A

}
.

The famous Kruskal-Katona theorem, [9], [8], says that among all families A ⊂
([n]

k

)
with |A| = m

the size of the upper shadow ofA is minimized whenA consists of the first m sets in
([n]

k

)
according

to the lexicographical order. The following immediate corollary of the Kruskal-Katona theorem
will be useful to us. Define ∂iA inductively by ∂1A = ∂A and ∂iA = ∂(∂i−1A) for i > 1.

Corollary 2.1 Let A ⊆
([n]

k

)
, and let 0 < r < k and i ≤ n− k. If |A| ≥

(
n−r
k−r

)
then

∣∣∂iA
∣∣ ≥ (

n−r
(k+i)−r

)
Another observation that follows from a simple counting argument will also be needed:

Proposition 2.2 For any A ⊆
([n]

k

)
and for all 1 ≤ i ≤ n− k

|A|(
n
k

) ≤ |∂iA|(
n

k+i

) .

Corollary 2.1 provides an easy derivation of the following generalization of the Erdős-Ko-Rado
theorem. For this and more on cross-intersecting families see e.g. [7] and [5] where this result is
proven. We include the proof for sake of self containedness.

Theorem 2.3 Let n, k, ` be integers such that k+` < n. LetA ⊆
([n]

k

)
and B ⊆

([n]
`

)
be cross intersecting.

Then either |A| ≤
(
n−1
k−1

)
or |B| ≤

(
n−1
`−1

)
.

Proof: Assume that |A| >
(
n−1
k−1

)
and |B| >

(
n−1
`−1

)
. For every i > 0, ∂iA and B are cross intersecting.

In particular, B cross-intersects with A′ = ∂n−`−kA which consists of n − `-element subsets. By
corollary 2.1, |A| >

(
n−1
k−1

)
implies |A′| ≥

(
n−1

n−`−1

)
.

Let Bc = {[n] \ S : S ∈ B} ⊆
( [n]
n−`

)
, then clearly |Bc| = |B| >

(
n−1
`−1

)
. We conclude that |Bc| +

|A′| >
(
n−1
`−1

)
+

(
n−1

n−`−1

)
=

(
n

n−`

)
so there must be some T ∈ Bc ∩A′ but this contradicts the fact that

A′ and B are cross-intersecting.

We now study some claims regarding the measure of monotone families.
The following easy claim is slightly reminiscent of Theorem 2.3.

Claim 2.4 Let A ⊆ 2[n] and B ⊆ 2[n] be monotone cross intersecting families, then for any p ≤ 1/2,
µp(A) + µp(B) ≤ 1.
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Proof: The monotonicity of A and B imply that µp(A) and µp(B) are non-decreasing functions of
p therefore µp(A) + µp(B) ≤ µ 1

2
(A) + µ 1

2
(B). However, µ 1

2
(A) + µ 1

2
(B) ≤ 1 since µ 1

2
is simply the

uniform measure over subsets, and if A ∈ A then ([n] \A) 6∈ B.

The following claim relates the size of A to the measure of A↑.

Claim 2.5 Let n > k > r, A ⊆
([n]

k

)
, and A↑ be the monotone closure of A. Let p ∈ (0, 1) and ε > 0 be

such that p(1− ε) > k−r
n−r . If |A| ≥

(
n−r
k−r

)
then µp(A↑) > pr[1− exp(−ε2pn/2)].

Proof: This follows from corollary 2.1, and a tail bound.

µp(A↑) =
n−k∑
i=0

pk+i(1− p)n−k−i
∣∣∂iA

∣∣ ≥ n−k∑
i=0

pk+i(1− p)n−k−i

(
n− r

k + i− r

)
= pr · µp

{
S ∈ 2[n−r] : |S| ≥ k − r

}
A standard Chernoff bound implies that PrS∼µp [|S| < (1− ε)pn] < exp(−ε2pn/2), which gives the
lemma.

We will also need another claim relating the size of a family of sets on the kth level of {0, 1}n
with its upper closure.

Lemma 2.6 Let j, k and n be integers with 1 ≤ j � k ≤ n/2. Let A ⊂
([n]

k

)
and let J be a j-junta. Set

p = k/n. Then

|A \ J | ≤ (2 + o(1))
(

n

k

)
µp(A↑ \ J ).

Proof: Let J ∗ ⊆ 2J be the family that generates J . For S ⊆ J Let

εS =
|AS |∣∣∣([n]
k

)
S

∣∣∣ =
|AS |∣∣∣( n−j
k−|S|

)∣∣∣ .
Then

|A \ J | =
∑

S∈2J\J ∗

|AS | =
∑

S∈2J\J ∗

εS

(
n− j

k − |S|

)
(1)

Note that
( n−j

k−|S|)
(n

k)
is the probability that a set of k = pn elements, chosen randomly without

replacement from [n], intersects J precisely at S. By the asymptotic equality of binomial and
hypergeometric random variables, this is approximately p|S|(1 − p)j−|S| = µp(NS) where NS =
{T ⊂ [n] : T ∩ J = S} . Therefore, (1) equals

= (1 + o(1))
(

n

k

) ∑
S∈2J\J ∗

εS · µp (NS) (2)

≤ (2 + o(1))
(

n

k

) ∑
S∈2J\J ∗

εS · µp

⋃
`≥k

NS ∩
(

[n]
`

) (3)

≤ (2 + o(1))
(

n

k

)
µp(A↑ \ J ) (4)

where in (3) we used the fact that the probability that the binomial random variable B(n− j, k/n)
exceeds k is asymptotically 1/2, and (4) follows from Proposition 2.2.
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To conclude this section we need, for the case k = o(n), a lemma allowing us to relate a pair of
families with an initial pair of juntas that we will use to construct the required capturing juntas.

In [6] it is shown that a Boolean function where the sum of influences is bounded is close to a
junta. This translates via the well known Margulis-Russo Lemma ([12],[10]) to the following.

Lemma 2.7 There exists a function j(p, K, ε) = 2O(K/ε) such that the following holds. Let p0 ∈ [0, 1] and
let A be a monotone family of subsets of [n]. Assume that

dµp(A)
dp

∣∣∣∣
p=p0

≤ K.

Then for every ε > 0 there exists a j-junta J , with j = j(p0,K, ε) such that

µp0(A4J ) ≤ ε.

What follows now is a special case of Lemma 1.2 in [3]. Let us present the essentials of the
reasoning there. Consider the quantity 0 ≤ µp(A) ≤ 1. Viewing it as a function of p its derivative
cannot be too large throughout the interval [0, 1], hence there must exist values of p where Lemma
2.7 can be applied. This implies the slightly surprising result that for any familyA one can always
find values of p for which A is approximable by a junta according to the corresponding measure.
In [3] this is applied simultaneously to several families, but we need only consider the case of two
families A and B.

Lemma 2.8 Let A,B ⊆ 2[n] be monotone families, and let (a, a + δ) ⊆ [0, 1]. Then for every ε > 0 there
exists p ∈ (a, a + δ) and j-juntas J and I ,with j = 2O(1/δε), such that

µp(A4J ) ≤ ε

and
µp(B4I) ≤ ε.

Proof: The set of points for which dµp(A)
dp > 2/δ has measure at most δ/2, and a similar statement

holds for dµp(B)
dp . The corollary follows.

By the way, for readers who are worried by issues of measurability we mention that dµp(A)
dp is in

fact a polynomial in p and hence well behaved.

3 Proofs of main theorems

3.1 The case k = o(n)

In this section we prove Theorems 1.6 and 1.7 concerning cross-intersecting families, and hence
also Theorems 1.4 and 1.5 which are special cases. Given families A ⊂

([n]
k

)
and B ⊂

([n]
l

)
we

will use Lemma 2.8 to find juntas that approximate their monotone closures according to some
measure µp. The surprising thing is that p, being a constant, is much larger than k

n and `
n and

hence, supposedly, this approximation is not strongly indicative of the structure of the families on
the kth and `th levels of the discrete cube. We then resort to use the corollary of the Kruskal-Katona
theorem, Corollary 2.1, to project back down to the kth and `th levels and prove our assertions.

Throughout what follows we think of n as tending to infinity, and k, ` = o(n). However we
will want k and ` to be sufficiently large for our approximations (such as the application of Lemma
2.8 in the proof of Lemma 3.2 below) to hold.

We begin with the following notion.
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Definition 3.1 Let m, k, n ∈ N and let A ⊆
([n]

k

)
be a family of subsets. We say that a subset J ⊂ [n]

m-captures A if the number of subsets in A that miss J is at most m,

|A∅(J)| = |{R ∈ A : R ∩ J = ∅}| ≤ m.

We will think of |J | as fixed as n tends to infinity, and m � |A| so the definition is non-trivial.

Indeed a set of size k misses J with probability (n−|J|
k )

(n
k)

which is ≈ 1 when k/n = o(1). It’s easy to

calculate that if we fix |J | and chose a random A ⊆
([n]

k

)
then even if we take m < 1

2 |A| with high
probability (over the choice of A) there is no subset J that m-captures A.

The following lemma asserts, however, that if A ⊆
([n]

k

)
and B ⊆

([n]
`

)
are cross intersecting

families and k, ` = o(n), then there do exist subsets J, I of bounded size that capture A,B respec-
tively.

Lemma 3.2 There exists a function j0(r) ≥ 1 such that for every r ≥ 1 the following holds. Let A ⊆([n]
k

)
,B ⊆

([n]
`

)
be cross intersecting families such that |A| >

(n−(r+1)
k−(r+1)

)
and |B| >

(n−(r+1)
`−(r+1)

)
. There are

sets J, I ⊂ [n] with |J |, |I| ≤ j0(r) such that J
(n−(r+1)
k−(r+1)

)
-captures A and I

(n−(r+1)
`−(r+1)

)
-captures B.

Proof: Let A↑ be the monotone closure of A, and B↑ the monotone closure of B. According to
Lemma 2.8, for every ε > 0 there exists 0.3 < p < 0.5 and s(ε)-juntas J and I with s(ε) = 2O(1/ε)

such that
µp(A↑4J ) < ε and µp(B↑4I) < ε. (5)

Now set ε = 100−r and apply Lemma 2.8 to get p ∈ (0.3, 0.5) and juntas J and I defined on
coordinate sets J and I respectively. Set j0(r) = s(ε), the bound on |J | and |I|. We now prove that
J and I are the required capturing sets. Assume J does not

(n−(r+1)
k−(r+1)

)
-capture A, i.e.,

|A∅(J)| = |{R ∈ A : R ∩ J = ∅}| >
(

n− (r + 1)
k − (r + 1)

)
.

For any S ⊆ J and family of sets C recall the notation

CS = CS(J) = {T ∈ [n] \ J : (T ∪ S) ∈ C}.

Let J ∗ be the family generating J . By our assumption |A∅| >
(n−(r+1)
k−(r+1)

)
. Applying Claim 2.5 to

A↑∅, viewed as a family of subsets of [n] \ J , we get

µp(A↑∅) ≥ (1− o(1))pr+1 >
pr+1

2
.

From the monotonicity of A↑ it follows that A↑S ⊇ A
↑
∅ for every S ⊆ J . Hence µp(A↑S) ≥ µp(A↑∅) >

pr+1

2 . Therefore,

µp

({
S ∪ T : T ∈ A↑

S

})
p|S|(1− p)|J\S|

= µp(A↑S) ≥ pr+1

2
,

where the first µp refers to {0, 1}[n], and the second µp refers to {0, 1}[n]\J . Hence

ε ≥ µp(A↑ \ J ) =
∑

S 6∈J ∗

µp

({
S ∪ T : T ∈ A↑

S

})
≥

∑
S 6∈J ∗

pr+1

2
p|S|(1− p)|J\S| =

pr+1

2
· (1− µp(J ))
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which implies

1− µp(J ) ≤ 2ε

pr+1
. (6)

Since |B| >
(n−(r+1)

`−(r+1)

)
it follows from Claim 2.5 that µp(B↑) > pr+1−o(1). By Claim 2.4 µp(A↑)+

µp(B↑) ≤ 1 so
1− µp(A↑) ≥ µp(B↑) ≥ pr+1 − o(1) .

On the other hand, since µp(A↑ \ J ) ≤ ε it follows that

1− µp(J ) ≥ 1− µp(A↑)− ε ≥ pr+1/2 >
2ε

pr+1
,

which, by our choice of ε, contradicts (6).

Having proven the existence of sets capturing cross-intersecting families we now proceed to
use these sets to construct the desired juntas.

Proof: The proof is by induction on r, the case r = 1 corresponding to Theorem 1.6 and the case
of r > 1 corresponding to Theorem 1.7.

Base Case, r = 1: Set c(1) = 2j0(1)+1 where j0 is the function defined in Lemma 3.2. LetA ⊂
([n]

k

)
and B ⊂

([n]
`

)
be cross intersecting with |A| > c(1) ·

(
n−2
k−2

)
and |B| > c(1) ·

(
n−2
`−2

)
.

We apply Lemma 3.2 with r = 1, and find J, I ⊂ [n] such that J
(
n−2
k−2

)
-captures A and I(

n−2
`−2

)
-captures B, and such that |J |, |I| ≤ j0(1). Let

AS = AS(J) = {U ⊆ [n] \ J : U ∪ S ∈ A} and BT = BT (I) = {W ⊆ [n] \ I : W ∪ T ∈ B} ,

and

J ∗ =
{

S ⊆ J : |AS | >
(

n− 2
k − 2

)}
and I∗ =

{
T ⊆ I : |BT | >

(
n− 2
`− 2

)}
.

The fact that J and I are capturing sets means precisely that ∅ 6∈ J ∗ and ∅ 6∈ I∗. Now let J and I
be the juntas defined by J ∗ and I∗ respectively. Defining j(1) := j0(1) they are both j(1)-juntas.
Also

|A \ J | =
∑

S 6∈J ∗

|AS | <
∑

S 6∈J ∗

(
n− 2
k − 2

)
< c(1) ·

(
n− 2
k − 2

)
,

as there are at most 2j0(1) < c(1) summands. Similarly

|B \ I| < c(1) ·
(

n− 2
`− 2

)
.

Now, if |S| > 1 then S 6∈ J ∗ because |AS | can be no more than the number of (k − |S|)-subsets of
[n] \ J , which is less than

(
n−2
k−2

)
. A similar argument applies to I∗ hence all sets in J ∗, I∗ have car-

dinality precisely 1. The point is that if {a} ∈ J ∗ and {b} ∈ I∗ then a = b. Assume otherwise, and
observe that A{a} and B{b} must be cross intersecting. By Theorem 2.3 either

∣∣A{a}∣∣ ≤ (n−|J |−1
k−2

)
or∣∣B{b}∣∣ ≤ (n−|I|−1

k−2

)
implying either {a} 6∈ J ∗ or {b} 6∈ I∗.
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Inductive step, r ≥ 2: Assume we have proven the theorem for values up to r − 1 ≥ 1 and
proceed to prove it for r. The proof begins by applying Lemma 3.2 with precision parameter r and
finding sets J0 ⊂ [n] that

(n−(r+1)
k−(r+1)

)
-captures A and I0 ⊂ [n] that

(n−(r+1)
`−(r+1)

)
-captures B . As in the

case above, let

AS = AS(J0) = {U ⊆ [n] \ J0 : U ∪ S ∈ A} and BT = BT (I0) = {W ⊆ [n] \ I0 : W ∪ T ∈ B} ,

and

J ∗
0 =

{
S ⊆ J : |AS | >

(
n− (r + 1)
k − (r + 1)

)}
and I∗0 =

{
T ⊆ I : |BT | >

(
n− (r + 1)
`− (r + 1)

)}
.

Clearly, as before, ∅ 6∈ J ∗
0 and ∅ 6∈ I∗0 . Now let J0 and I0 be the juntas generated by J ∗

0 and
I∗0 respectively. They are our first approximation to J , I and we would now be done except for
the fact that they are not necessarily cross-intersecting. Indeed we have a bound on the sizes of J0

and I0, they are both no larger than j0(r). Also, using the same reasoning as in the base case r = 1
we see that

|A \ J0| < 2|J0| ·
(

n− (r + 1)
k − (r + 1)

)
and |B \ I0| < 2|I0| ·

(
n− (r + 1)
`− (r + 1)

)
.

One may ask, if this is the case, why do we not make do with a theorem that guarantees
approximating juntas, and does not assert that they are cross intersecting. The (slightly self ref-
erential) answer is that the stronger statement is needed as the induction hypothesis in order to
push the proof through (and that it is nicer to prove a stronger statement).

Returning toJ0 and I0 we will now mend the potential flaw of them not being cross-intersecting
by iteratively refining them, adding more elements to J0 and I0 and redefiningJ ∗, I∗. This process
will terminate after a finite number of steps, eventually making the approximating families cross-
intersecting.

We rely on the inductive hypothesis to prove the following claim.

Claim 3.3 Let S ∈ J ∗
0 and T ∈ I∗0 be disjoint. Then there exist two sets J (S) ⊆ [n] and I(T ) ⊆ [n] and

two non trivial juntas J (S) generated by J (S)∗ ⊂ 2J(S) and I(T ) generated by I(T )∗ ⊂ 2I(T ) with the
following attributes.

1. |J (S)|, |I(T )| ≤ j0(r − 1), and J (S) ∩ S = ∅ and I(T ) ∩ T = ∅.

2. J (S) and I(T ) are cross-intersecting.

3. J (S) and I(T ) approximate AS and BT well:∣∣∣AS \ J (S)
∣∣∣ ≤ (

n− (r + 1)
k − (r + 1)

)
and ∣∣∣BT \ I(T )

∣∣∣ ≤ (
n− (r + 1)
`− (r + 1)

)
.

Proof: Clearly AS and BT are cross intersecting. These are families of (k − |S|)-element sets
and (` − |T |)-element sets respectively. We apply the inductive hypothesis to these two cross-
intersecting families, with r − 1. To do so we note that

|AS | >
(

n− (r + 1)
k − (r + 1)

)
> c(r − 1)

(
n− (r + 1)

(k − |S|)− (r + 1)

)
10



and

|BT | >
(

n− (r + 1)
`− (r + 1)

)
> c(r − 1)

(
n− (r + 1)

(`− |T |)− (r + 1)

)
and deduce that J (S) and I(T ) exist as required, with∣∣∣AS \ J (S)

∣∣∣ ≤ c(r − 1)
(

n− (r + 1)
(k − |S|)− (r + 1)

)
≤

(
n− (r + 1)
k − (r + 1)

)
(7)

and ∣∣∣BT \ I(T )
∣∣∣ ≤ c(r − 1)

(
n− (r + 1)

(`− |T |)− (r + 1)

)
≤

(
n− (r + 1)
`− (r + 1)

)
. (8)

Finally, observe that without loss of generality J (S) ∩ S = ∅ and I(T ) ∩ T = ∅ since every member
of AS is disjoint from S, and likewise for BT .

We now apply the following iterative algorithm to generate J ∗ and I∗:

Step 1: Set J ← J0, I ← I0 and J ∗ ← J ∗
0 , I∗ ← I∗0 .

Step 2: Repeat this step until there are no subsets S ∈ J ∗ and T ∈ I∗ such that

• S ∩ T = ∅, and

• |AS | >
(n−(r+1)
k−(r+1)

)
and |BT | >

(n−(r+1)
`−(r+1)

)
.

Select a pair of such subsets S, T and let J (S) and I(T ) be the two subsets guaranteed by Claim 3.3
and let J (S)∗ ⊆ 2J(S)

and I(T )∗ ⊆ 2I(T )
be the corresponding families, and J (S) and I(T ) the juntas

generated by them. Replace J by J ∪ J (S) and update J ∗ by removing S and replacing it with
S ∪ S′ for all sets S′ ∈ J (S)∗. Similarly for I and I∗:

J ← J ∪ J (S), I ← I ∪ I(T )

and

J ∗ ← J ∗ ∪
{

S ∪ S′ : S′ ∈ J (S)∗
}
\ {S} , I∗ ← I∗ ∪

{
T ∪ T ′ : T ′ ∈ J (T )∗

}
\ {T} .

Step 3: Remove from J ∗ all sets S such that |AS | ≤
(n−(r+1)
k−(r+1)

)
, and similarly for I∗.

We first observe that the procedure ends after a finite number of steps that depends only on
r. To see this note that whenever Step 2 is applied, and a set S ∈ J∗ is replaced by new sets, it is
replaced by at most 2j(r−1) sets, which are all of size strictly larger than it. Also, if |S| ≥ r + 1 then
S 6∈ J∗ because |AS | ≤

(n−(r+1)
k−(r+1)

)
. Hence every original set in J ∗

0 has at most 2r·j(r−1) descendants

in this process, resulting altogether in a total of at most 2j0(r) · 2r·j(r−1) sets in each family. Since
all sets are of size at most r we can define j(r) = r · 2j0(r) · 2r·j(r−1) The resulting families are
clearly intersecting since each pair of subsets S ∈ J ∗, T ∈ I∗ would have undergone replacement
if they were disjoint. It remains to show thatA and B are indeed almost contained in the resulting
families. Let S ∈ J ∗ at some stage of the algorithm. Consider the update operation where S is
removed from J ∗ and replaced by {S ∪ S′ : S′ ∈ J (S)∗}, and J is updated accordingly. There is a
1-1 correspondence between the sets thus added to A \ J and the sets in AS \ J (S). From (7) we
have that the number of these is no more than

(n−(r+1)
k−(r+1)

)
. Hence we may accumulate throughout
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the process at most c(r)
(n−(r+1)
k−(r+1)

)
such sets where c(r) := 2j0(r) · (2r·j(r−1) + 1). A similar estimate

holds for the approximation of B by I. This completes the proof.

Remark: Clearly the recursive definition given above of the function j(r) gives a tower like growth
rate. However, using some combinatorial reasoning, one can deduce that the true behavior is no
more than exponential. The final approximating junta may be represented, after discarding any
variables that do not play an actual role, as a critical intersecting hypergraph with all edge sizes
at most r. Here critical means that for every vertex v there exists a pair of edges E,F such that
E ∩ F = {v}. It follows from results of Tuza [13] that the number of vertices in such a hypergraph
is at most O(4r) and this is tight.

3.2 Independent sets in graph products and the case k = pn

In this subsection we prove Theorem 1.2, the proof being an almost immediate corollary of results
from [2], where independent sets in graph products are studied.

An intersecting family is nothing else than an independent set in a Kneser graph: the graph
whose vertices are

([n]
k

)
, and edges connect pairs of disjoint subsets. The Kneser graph is not

a graph product per se, but there is a natural ‘smoothed’ analog of it from which Theorem 1.2
follows.

We begin with some definitions. The n-th power of an undirected graph G = (V,E), denoted
by Gn, is defined as follows: the vertex set is V n, and two vertices (u1, . . . , un) and (v1, . . . , vn) are
adjacent in Gn if and only if ui is adjacent to vi in G for every i. This is, in graph-theoretic terms,
the n-fold weak product of G with itself. An alternative description is that the adjacency matrix of
Gn is the n-fold tensor product of the adjacency matrix of G with itself. In the spirit of our previous
definition of a junta we will say that a set of vertices J in V (Gn) is a j-junta generated by J ∗ if
there exists a set of coordinates J ⊂ [n], and a familyJ ∗ ⊂ V J such thatJ = {v : v|J ∈ J ∗}, where
v|J denotes the restriction of the vector v to the coordinates in J . For any graph G let M = M(G)
be the normalized adjacency matrix of G,

Mu,v =


1/ deg(u) u ∼ v

0 otherwise .

Let µG be the unique stationary measure of the simple random walk on V (G) (the Markov chain
described by M ),

µG(u) =
deg(u)
2|E|

.

For a setA ⊂ V (G) define the sparseness ofA, denoted by Sp(A), to be the proportion of the edges
in G that are spanned by A. This is equivalent to the following definition which is the correct one
for purpose of the generalization that will follow below.

Sp(A) = Pr{v ∈ A, w ∈ A} (9)

where v and w are two consecutive steps in the simple random walk on V (G) with the starting
point chosen according to µG. Note that if A is independent then Sp(A) = 0. Also note that in a
product graph Gn if J is a j-junta generated by J ∗ then Sp(J ) = Sp(J ∗), where the sparseness
of J ∗ is measured in Gj .

If the eigenvalues of M(G) are 1 = λ1 ≥ λ2 ≥ . . . ≥ λm then we define

λ(G) = max{|λi|, i > 1}.
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Note that if G is connected and nonbipartite then λ(G) < 1. Also, λ(Gn) = λ(G).
We now can state the main theorem of [2] which asserts that if G is connected and nonbipartite

then every independent set in Gn is almost contained in a sparse junta.

Theorem 3.4 ([2]) There exists a function j′(ε, λ) such that the following holds. Let G be a connected and
non-bipartite graph with λ(G) = λ < 1. Let µ be the stationary measure of the simple random walk on
V (Gn). Let A ⊂ V (Gn) be an independent set. Then for every ε > 0 there exists a j′-junta J , with
j′ = j′(ε, λ) such that

1. µ(A \ J ) ≤ ε.

2. Sp(J ) ≤ ε.

As noted in [2] the proof of the theorem applies also to more general reversible, irreducible,
aperiodic Markov chains (corresponding to connected non-bipartite graphs with weighted edges.)
We now wish to apply the theorem to the setting of intersecting families in {0, 1}n. To this end we
fix p ∈ (0, 1/2) and consider the Markov chain on the two point space {0, 1} defined by the matrix

M =
( 1−2p

1−p
p

1−p

1 0

)
. (10)

Note that this Markov chain, when in state 1, always moves to 0. When tensored the result has the
following nice attributes.

1. The stationary measure of the Markov chain defined by M⊗n on {0, 1}n is precisely the
product measure µp defined by µp(x) = pΣxi(1− p)Σ(1−xi).

2. The probability to move from a state s ∈ {0, 1}n to a state t ∈ {0, 1}n is nonzero only if the
subsets corresponding to s and t are disjoint. Hence this chain can be viewed as a smoothed
analog of the Kneser graph.

3. A Chernoff type bound implies that almost all of the weight of the transitions in the chain is
supported by vertices corresponding to sets of size close to k = pn.

To verify this it suffices to study the case n = 1. We leave this to the reader.
Finally, let us define the notion of ε-almost-intersecting which appears in the statement of

Theorem 1.2. Recalling that we identified each S ⊆ [n] with its characteristic vector s ∈ {0, 1}n we
henceforth think of the Markov chain defined by M⊗n as a Markov chain on 2[n].

Definition 3.5 Let p ∈ [0, 1/2], and let A ⊆ 2[n]. We say that A is ε-almost intersecting if

Sp(A) ≤ ε

where sparseness is with respect to the chain M⊗n (with M as defined in (10).)

Remark: An alternative way to think about the definition of the Markov chain is this: from
a state corresponding to a set T the chain moves to a set S which is disjoint from T by choosing
a random subset of the compliment of T , picking each element independently with probability

p
1−p . Recalling that the stationary measure of this chain is µp the sparseness of A or the fact that A
is ε-almost-intersecting may be interpreted as follows. When one selects at random two disjoint
subsets of [n] such that the marginal distribution of each is µp then the sparseness ofA is precisely
the probability that they both belong to A. Specifically, let p ∈ [0, 1/2], and let A ⊆ 2[n]. Partition
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[n] into three sets S, T, R at random by adding each element independently to S with probability
p, to T with probability p and to R with probability 1− 2p. Then A is ε-almost-intersecting if

Pr[S ∈ A and T ∈ A] ≤ ε.

Going back to the chain M , the eigenvalues of M are 1 and − p
1−p so for p < 1/2 we have

λ(M) = p
1−p < 1 and we can apply Theorem 3.4 and deduce the following.

Corollary 3.6 There exists a function j′(ε, p) such that the following holds. Let p ∈ (0, 1/2) and let
A ⊂ 2[n] be an intersecting family. Then for every ε > 0 there exists a j′-junta J , with j′ = j′(ε, p) such
that

1. µp(A \ J ) ≤ ε.

2. J is ε-almost-intersecting in µp({0, 1}n).

Theorem 1.2 now follows easily from this corollary.

Proof: Let A ⊂
([n]

k

)
be an intersecting family, and let A↑ ⊂ {0, 1}n be its monotone closure. Set

p = k/n, ε′ = ε/3 and define j = j(p, ε) := j′(p, ε′). Corollary 3.6 guarantees the existence of an
ε-almost-intersecting junta J in µp({0, 1}n) such that µp(A↑ \ J ) ≤ ε′. Lemma 2.6 then implies
that |A \ J | ≤ ε

(
n
k

)
as required.

Remark: Note that choosing any p′ 6= p would not work in this proof. The application of Lemma
2.6 utilizes the fact that µp focuses on

([n]
k

)
.
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