
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 1

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, November 5th, in the tutorial. Sections marked as bonus are not mandatory.

1. Division with remainder

Definition: given two integers a, b where b 6= 0 we say that q and r are the quotient and
the remainder of the division of a in b (respectively) if a = bq + r and 0 ≤ r < |b|.

Example: The quotient and the remainder of the division of -55 in -6 are 10 and 5
(respectively).

Claim: For any two integers a, b where b > 0 there exist integers q and r such that
a = bq + r and 0 ≤ r < b.

Proof: Let us look at all the numbers of the form {a − xb}x∈Z. This set contains non
negative numbers, so take r to be the minimal non negative number in this set. To show
that 0 ≤ r < b we assume otherwise, i.e. assume r ≥ b. In that case r− b = a− xb− b =
a− (x+ 1)b ≥ 0 is a smaller non negative number in that set, a contradiction. �

Remark: the proof for negative b is similar.

1.1. Exercise: Proof that the quotient and the remainder of the division of two integers
are unique, i.e. show that if a and b 6= 0 are two integers, a = bq+ r and 0 ≤ r < |b|, and
also a = bq1 + r1 and 0 ≤ r1 < |b|, then q = q1 and r = r1.

Definition: given two integers a, b where b 6= 0 we say that a is divisible by b and that
b divides a if the remainder of the division of a in b is zero. In that case we write b|a.

2. Arithmetic Modulo N

Definition: given an integer N > 0 and integers a, b, we say that a and b are congruent
(or equal) modulo N if N |(a− b). In that case we write a ≡ b (mod N).

Examples: 1 ≡ 8 (mod 7), 3 ≡ −97 (mod 50), a ≡ b (mod 2) if and only if a and b
have the same parity (i.e. either both are even or both are odd).

Notation: the remainder of the division of a in N is called the residue of a modulo N
(and it is of course congruent to a modulo N).

2.1. Exercise: Fix N > 0. Prove that congruence modulo N is an equivalence relation
on the integers, i.e. show that:

2.1.1. Reflexivity. For any integer a: a ≡ a (mod N).

2.1.2. Symmetry. For any two integers a, b: if a ≡ b (mod N) then b ≡ a (mod N).
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2.1.3. Transitivity. For any three integers a, b, c: if a ≡ b (mod N) and b ≡ c (mod N)
then a ≡ c (mod N).

2.2. Exercise: Prove that arithmetic module N is well-defined: if a ≡ b (mod N) and
c ≡ d (mod N), then a+ c ≡ b+ d (mod N) and ac ≡ bd (mod N).

Remark: by induction one can easily show that for any m ≥ 1: if {ai ≡ bi (mod N)}mi=1

then
∑m

i=1 ai ≡
∑m

i=1 bi (mod N) and
∏m

i=1 ai ≡
∏m

i=1 bi (mod N).

2.3. Exercise: What is the residue of 19101 modulo 18? What is the residue of 19101

modulo 20? What is the residue of 2100 modulo 5?

2.4. Exercise: Prove that 9 divides 22227777 + 77772222 (hint: what does it mean to be
divisible by N in terms of arithmetic modulo N?).

2.5. Exercise: Let c,N > 0 be two positive integers, and let a, b be integers. Assume
ac ≡ bc (mod Nc). Prove that a ≡ b (mod N).

3. Divisibility Rules

In this section we will use modular arithmetic in order to prove some divisibility rules.

3.1. Exercise: Let a be a positive integer. Assume its decimal representation is
akak−1ak−3...a2a1, i.e. a =

∑k
i=1 ai10i−1. Denote by S the sum of a’s digits in the decimal

representation, i.e. S =
∑k

i=1 ai. Denote by T the alternating sum of a’s digits in the

decimal representation, i.e. T =
∑k

i=1(−1)i+1ai. Prove that:

3.1.1. a ≡ S (mod 9). Deduce that a is divisible by 9 if and only if S is divisible by 9
(hint: what does it mean to be divisible by N in terms of arithmetic modulo N?).

3.1.2. a ≡ S (mod 3). Deduce that a is divisible by 3 if and only if S is divisible by 3
(hint: using the previous result this is very easy).

3.1.3. (bonus) a ≡ T (mod 11). Deduce that a is divisible by 11 if and only if T is
divisible by 11.

4. Greatest Common Devisor

Definition: let a, b be two integers. An integer d is called a common divisor of a and b
if both a and b are divisible by d.

Definition: let a, b be two integers, where at least one of them is not zero. The maximal
common devisor of a and b is called the Greatest Common Divisor of a and b, and is
denoted by gcd(a, b). If gcd(a, b) = 1 we say that a and b are co-prime, or relatively
prime. In that case we also say that a is co-prime to b.

Examples: gcd(4, 6) = 2, gcd(125, 100) = 25, for any non zero integer a: gcd(a, 0) = |a|,
a prime number p is co-prime to any number which is not a multiple of it.
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5. Euclid’s algorithm

Given two integers a and b, where at least one of them is not zero, we would like to
find gcd(a, b). Thus the input of the algorithm consists of two integers a and b 6= 0, and
the output is gcd(a, b).

Description of the algorithm:

Stage 0: divide a in b:
a = q0b+ r0

stage 1: divide b in r0:
b = q1r0 + r1

stage 2: divide r0 in r1:
r0 = q2r1 + r2

stage 3: divide r1 in r2:
r1 = q3r2 + r3

stage k: divide rk−2 in rk−1:
rk−2 = qkrk−1 + rk

If r0 = 0 then gcd(a, b) = |b|. Otherwise:

If rk 6= 0 proceed to step k+1, otherwise gcd(a, b) = rk−1. We denote by n the minimal
integer k such that rk = 0, i.e. gcd(a, b) = rn−1 (unless r0 = 0).

The special case where r0 = 0, i.e. where b|a, should be proven separately - make sure
you understand why in that case gcd(a, b) = |b|.

Claim: the algorithm will stop after finitely many steps.

Proof: By definition of division with remainder we have 0 ≤ r0 < b. In addition we
have r0 > r1 > r2 > ... and ri ≥ 0 for any i. Thus the series ri is a strictly descending
series of non-negative integers, and so reaching zero at some point. �

5.1. Exercise: Prove that for any two integers a, b, where at least one of them is not zero,
and for any integer q: gcd(a, b) = gcd(a, b+ qa) (hint: show that d is a common divisor of
a and b if and only if d is a common divisor of a and b+ qa). Deduce that rn−1 is indeed
gcd(a, b).

5.2. Exercise: Prove that gcd(a, b) can be written as a linear combination of a and b with
integer coefficients (hint: consider the steps of Euclid’s algorithm, and prove by induction
that at each step, the new remainder ri that appears in this step can be written as linear
combinations of a and b with integer coefficients).

Remark: The representation of gcd(a, b) as a linear combination of a and b with inte-
ger coefficients is sometimes called Bezout’s identity or Bezout’s Lemma. Finding this
combination using the method above is sometimes called extended Euclid’s algorithm.
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5.3. Exercise: Prove that gcd(a, b) is the minimal positive integer that can be written
as a linear combination of a and b with integer coefficients (hint: prove that if d is a
common divisor of a and b then d divides any linear combination of a and b with integer
coefficients).

Example: Let us calculate gcd(23, 5) and write it as a linear combination of 23 and 5
with integer coefficients using Euclid’s algorithm:

23 = 4 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0

so gcd(23, 5) = 1, and

1 = 3− 1 · 2 = 3− 1 · (5− 1 · 3) = (−1) · 5 + 2 · 3 = (−1) · 5 + 2 · (23− 4 · 5) = 2 · 23− 9 · 5.

5.4. Exercise: Calculate gcd(1369, 2597) and write it as a linear combination of 1369 and
2597 with integer coefficients using Euclid’s algorithm.

5.5. Fundamental theorem of arithmetic. Recall the fundamental theorem of arith-
metic stating any positive integer is a factor of prime numbers, and that this factorization
is unique up to ordering. Taking two positive integers

a = pm1
1 · pm2

2 · pm3
3 · pm4

4 · · · ·p
mk
k , b = pn1

1 · pn2
2 · pn3

3 · pn4
4 · · · ·p

nk
k

where p1 < p2 < p3 < p4 < ... < pk are prime numbers and
m1,m2,m3,m4, ...,mk, n1, n2, n3, n4, ..., nk are non negative integers, one has:

gcd(a, b) = p
min{m1,n1}
1 · pmin{m2,n2}

2 · pmin{m3,n3}
3 · pmin{m4,n4}

4 · · · pmin{mk,nk}
k .

5.5.1. Warning: In order to prove the fundamental theorem of arithmetic we usually use
Euclid’s algorithm and Bezout’s Lemma. Thus, when proving claims about Euclid’s algo-
rithm (e.g. in the exercises above) we cannot use the fundamental theorem of arithmetic.

5.5.2. Remark: Although finding the greatest common divisor using factorization may
seems to be easier than Euclid’s algorithm, it is not the case. Factoring a number into
primes is a difficult problem (RSA is based on this fact) so Euclid’s algorithm is much
more efficient and commonly used.

5.6. Exercise: (bonus) We would like to bound the number of steps in Euclid’s algorithm.

5.6.1. Prove that the remainders r1, r2, ... satisfy ri+2 < ri/2 (hint: consider separately
the cases ri+1 < ri/2, ri+1 = ri/2 and ri+1 > ri/2).

5.6.2. Prove that if a and b are two positive integers, a > b and b < 2n then the number
of steps in Euclid’s algorithm for finding gcd(a, b) is not more than 2n.

6. Invertible modulo n

Definition: given a positive integer N and two integers a and b, we say that b is inverse
to a modulo N if ab ≡ 1 (mod N). Given a, if such a number b exists, we say that a is
invertible modulo N .
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6.1. Exercise: Prove that the inverse to a modulo N is well defined modulo N , i.e. if b
and c are inverse to a modulo N , then b ≡ c (mod N), and conversely if b is inverse to a
modulo N and b ≡ c (mod N) then c is also inverse to a modulo N .

Remark: by the exercise above given a which is invertible modulo N , there exists a
unique inverse b such that b ∈ {1, 2, ..., N − 1}.

6.2. Exercise: Prove that an integer a is invertible modulo N if and only if gcd(a,N) = 1,
i.e. a and N are co-prime (hint: first show that a is invertible modulo N if and only if
1 can be written as a linear combination of a and N with integer coefficients. Then use
Bezout’s Lemma and 5.3). Deduce that given a prime number p and an integer a, a is
invertible modulo p if and only if p - a.

6.3. Exercise: Is 1369 invertible modulo 2597? If not prove it. If it does find an inverse
(hint: use 5.4 and 6.2).

6.4. Exercise: (bonus) Prove Wilson’s theorem: For any prime number p:

(p− 1)! = 1 · 2 · 3 · · · ·(p− 1) ≡ −1(modp).

Instructions: any number a ∈ {1, ..., p − 1} is invertible modulo p. We know that we
can choose its inverse (modulo p) b such that it also belongs to the set {1, ..., p − 1}.
This means that we can try to divide the numbers in the set {1, ..., p − 1} into disjoint
two-element sets (”pairs”) {a, inverse to a}. All the numbers will get into pairs except
for two (who are they and why do they have no pair?). Now use the fact that the product
of two numbers in such a pair is 1 modulo p to prove Wilson’s theorem.

7. Euler’s φ function

Definition: given a positive integer N we define φ(N) to be the number of positive
integers less than N that are invertible modulo N (by above this is exactly the number
of positive integers less than N that are co-prime to N).

7.1. Exercise: Solve section (b) of problem 2 on p. 234 in the book ”Math and Technol-
ogy” (hint: Proposition 7.8 on p. 215).

8. Euler’s Theorem and Fermat’s little Theorem (reminder)

Euler’s Theorem: Let N > 1 be an integer and a be an integer which is co-prime to N ,
then: aφ(N) ≡ 1 (mod N).

A special case of Euler’s Theorem is Fermat’s little Theorem: Let p be a prime number
and a be an integer which is not divisible by p, then: a(p−1) ≡ 1 (mod p).

Remark: we will prove Euler’s Theorem when we discuss Group theory later on this
semester. An elementary proof may be found for instance in Wikipedia.

9. Cryptography

9.1. Exercise: Solve Problem 7 on p. 235 in the book ”Math and Technology”.

E-mail address: ary.shaviv@weizmann.ac.il
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