
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 2

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, November 12th, in the tutorial. Sections marked as bonus are not mandatory.

1. Polynomials (reminder)

Definition: Let P (x) = a0 + a1x + a2x
2 + a3x

3 + ... + anx
n be a polynomial such that

an 6= 0. We define the degree of P (x) to be n and we write deg(P ) = n. Note that the
degree of the zero polynomial (P (x) = 0) is not defined.

Easy facts: Let P (x), Q(x) be two non zero polynomials, then deg(P + Q) ≤
max{deg(P ), deg(Q)} (unless P = −Q, in that case deg(P + Q) is not defined),
deg(P ·Q) = deg(P ) + deg(Q).

1.1. Exercise: Give an example of a polynomial of degree 3 with roots 1, 2, 3 (write the
coefficients explicitly).

1.2. Exercise: Let P (x), Q(x) be two polynomials such that the sum of the coefficients of
P (x) is 14, and the sum of coefficients of Q(x) is 7. What would be the sum of coefficients
of each of the following polynomials?

(1) P (x) +Q(x)
(2) P (x) ·Q(x)

(hint: what value of x should you substitute in a polynomial in order to get the sum of
its coefficients?)

1.3. Exercise: Is there a polynomial P (x), of degree at most 2, such that

P (0) = 2, P (1) = 7, P (2) = 0, P (3) = −19 ?

If the answer in no prove it, if the answer is yes prove whether this polynomial is unique
and find all such polynomials.

1.4. Exercise: Let P (x) be a polynomial and define Q(x) = P (x)·(x−1). It is known that
all the non-zero coefficients of Q(x) are positive. What can you say about the coefficients
of P (x)?

2. Division with remainder

2.1. Theorem: Let P (x), Q(x) be two polynomials such that Q(x) 6= 0. There exist
unique polynomials R(x), D(x) such that P (x) = D(x)Q(x) + R(x) and either deg(R) <
deg(Q) or R(x) = 0.

Definition: D(x) and R(x) as above are called the quotient and the remainder of P (x)
divided by Q(x) respectively. If R(x) = 0 we sy that Q(x) divides P (x), and P (x) is
divisible by Q(x), and we write Q(x)|P (x).

Proof of the Theorem: we prove by giving an explicit iterative algorithm for finding
D(x) and R(x). Define P0(x) = P (x) and C0(x) = 0.
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Step k: If either Pk−1(x) = 0 of deg(Pk−1(x)) < deg(Q(x)) we define

R(x) = Pk−1(x) and D(x) = C0(x) + C1(x) + C2(x) + C3(x) + ...+ Ck−1(x).

Otherwise we define

lk = deg(Pk−1(x))− deg(Q(x)), αk =
Pk−1(x)’s leading coefficient

Q(x)’s leading coefficient
,

Ck(x) = αk · xlk , Pk(x) = Pk−1(x)− Ck(x) ·Q(x),

and proceed to step k + 1.

In order to prove the theorem it is enough to prove the following three claims:

Claim 1: The algorithm stops after a finite number of steps.

Claim 2: D(x) and R(x) obtained in the algorithm indeed satisfy P (x) = D(x)Q(x) +
R(x) and either deg(R) < deg(Q) or R(x) = 0.

Claim 3: D(x) and R(x) are unique, i.e. if P (x) = D(x)Q(x) + R(x) and either
deg(R) < deg(Q) or R(x) = 0, and in addition P (x) = D1(x)Q(x) + R1(x) and either
deg(R1) < deg(Q) or R1(x) = 0, then D1(x) = D(x) and R1(x) = R(x).

Proof of Claim 1: The series of numbers {deg(Pk(x))}k≥0 is a strictly descending series
of non-negative integers (as by defining Pk(x) = Pk−1(x)−Ck(x) ·Q(x) the leading power
of x in Pk−1(x) is cancelled out), thus it must reach {0, 1, 2, ..., deg(Q) − 1} or stop as
Pk(x) = 0 for some k.

Proof of claim 2: It is clear from the algorithm that the condition either deg(R) <
deg(Q) or R(x) = 0 holds. Assume the algorithm stopped at step n+ 1, then:

P (x) = P0(x) = P1(x) + C1(x) ·Q(x) = P2(x) + C2(x) ·Q(x) + C1(x) ·Q(x) = ...

... = Pn(x) + (Cn(x) + Cn−1(x) + C1(x)) ·Q(x) = R(x) +D(x) ·Q(x)

as desired.

The proof of claim 3 is left as an exercise.

Thus we proved Theorem 2.1. �

2.2. Exercise: Prove claim 3 above.

2.3. Example: Let us divide with remainder the polynomial 3x5 + 4x3 + 2 in the poly-
nomial x2 + 1.

Step 0: define C0(x) = 0, P0(x) = 3x5 + 4x3 + 2, and proceed to step 1.

Step 1: define l1 = 3, α1 = 3 and C1(x) = 3x3, P1(x) = x3 + 2, and proceed to step 2.

Step 2: define l2 = 1, α2 = 1 and C2(x) = x, P2(x) = −x + 2. Here the algorithm
stops as 1 = deg(P2(x)) < deg(Q(x)) = 2, and we have D(x) = C0(x) + C1(x) + C2(x) =
3x3 + x,R(X) = P2(x) = −x+ 2.
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One can verify that indeed 3x5 + 4x3 + 2 = (3x3 + x)(x2 + 1) + (−x+ 2).

2.4. Exercise: Divide with remainder the polynomial x7 + 1 in the polynomial x2 + 3
(show all the steps).

2.5. Exercise: Let P (x), Q(x) be two polynomials, D(x) be the quotient of the division
of P (x) by Q(x), and R(x) be the remainder. Assume deg(P (x)) = 100, deg(Q(x)) = 43.
What could be the degrees of D(x) and R(x) (list all the possibilities)? Prove your answer!

2.6. Exercise: Show that when dividing with remainder a polynomial P (x) by the linear
polynomial x− a (a being a complex number), the remainder is the constant polynomial
P (a). This result is called Little Bezout’s Theorem.

It follows from Little Bezout’s Theorem that a number a is the root of the polynomial
P (x) if and only if the polynomial P (x) is divisible by the linear polynomial x− a.

2.7. Exercise: (bonus) For which positive integers n, k the polynomial xk− 1 divides the
polynomial xn − 1?

3. Greatest Common Divisor of polynomials and Euclid’s algorithm

Definition: let P,Q be two polynomials, we call a polynomial D a common divisor of
P and Q if both D|P and D|Q.

Definition: the greatest common divisor of two polynomials P and Q, where at least
one of them is not zero, is the common divisor D satisfying the following two conditions:
the degree of D is maximal out of all of the common divisors of P and Q, and D is a
monic polynomial (i.e. a polynomial with leading coefficient 1). We denote such D by
gcd(P,Q).

One can show that such polynomial always exists and it is unique. It follows from the
following fact:

Let P,Q be two polynomials, where at least one of them is not zero, then for any
common divisor D of P and Q: D|gcd(P,Q).

This fact is also true for numbers:

Let a, b be two integers, where at least one of them is not zero, then for any common
divisor d of a and b: d|gcd(a, b).

In fact, these facts can be taken to be the definition of the greatest common divisor,
and it turns out this will be equivalent to the definition we gave, up to the sign in the
numbers case and the monic requirement in the polynomial case.

One can define Euclid’s algorithm for polynomials in the same way we did for inte-
gers, and prove it gives us the greatest common divisor after dividing the last non zero
remainder in the algorithm by the leading coefficient (i.e. after making it monic).

3.1. Exercise: (bonus) Calculate gcd(2x4 + 5x2 − 7, x3 + 3x2 − x − 3). (instructions:
follow carefully the steps of Euclid’s algorithm for numbers, it is not difficult!).
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4. Using modular arithmetic for polynomials

4.1. Example: does the polynomial f(x) = x2 − 117x+ 31 has an integer root?

Let us show that the answer is no by looking at f(x) modulo 2. Assume a is an integer
such that f(a) = 0, then a2−117a+31 = 0. Note that a2−117a+31 ≡ a2+a+1 (mod 2).
However, if a is even (i.e. a ≡ 0 (mod 2)) then a2 + a + 1 ≡ 0 + 0 + 1 ≡ 1 (mod 2) and
if a is odd (i.e. a ≡ 1 (mod 2)) then a2 + a + 1 ≡ 1 + 1 + 1 ≡ 1 (mod 2). Thus we got a
contradiction and so the polynomial f(x) = x2 − 117x+ 31 has no integer roots. �

4.2. Exercise: Is there a polynomial P (x) with integer coefficients such that P (7) = 5
and P (11) = 7?

5. Complex Numbers (reminder)

Recall that any complex number can be written either in the form a + bi (with a, b
being two real numbers), or reiθ = r(cos(θ) + i sin(θ)). Also recall that complex numbers
can be represented as points on the plane R2: z = a+ ib is represented by the point whose
Cartesian coordinates are (a, b), or z = reiθ is represented by the point whose distance
from the origin is r and the angle from the positive side of the ”real” axis is θ.

5.1. Exercise: Write the following numbers in the form a+bi, where a, b are real numbers:

(1) i10

(2) 1
1+i

(3) (
√

3 + i)30

(4) 1 + i+ ...+ i100

(5) 1+i
1−i

5.2. Exercise: In each of the following cases, describe the set of points on the plane for
which the corresponding complex numbers z satisfy the equation:

(1) z + z̄ = 1
(2) z · z̄ = 1

(the description should include both a description of the set in terms of Cartesian coor-
dinates, and a geometrc description).

5.3. Exercise: Let z, w be two complex numbers. Prove the inequality:

|z|+ |w| ≥ |z + w| .
When does equality occurs (hint: use the representation of complex numbers as points

on the plane)?

Recall the function of complex conjugation taking a complex number z = a+ bi = reiθ

and sending it to z̄ = a− bi = re−iθ.

5.4. Exercise: Prove that for any complex number z both z · z̄ and z+ z̄ are real numbers.
Express these two numbers in terms of a and b. Express those two numbers in terms of
r and θ.

5.5. Example: let us find all complex z’s such that z3 = 1. First, in order not to lose
solutions we write z = rei(θ+2πk), and then z3 = r3(ei(θ+2πk))3 = r3e3i(θ+2πk) = 1 = 1ei0. It
is easy to see that r = 1 and then taking 3rd root we get θ = 0

3
+ 2πk

3
, i.e. θ ∈ {0, 2π

3
, 4π

3
}.
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6. Reducibility of polynomials

Definition: Let P (x) be a non constant polynomial with coefficients in a field F (e.g.
the real numbers). We call P (x) irreducible over F if it there are no two non constant
polynomials Q(x), R(x) with coefficients in the field F such that P (x) = Q(x) ·R(x).

Example: x2 + 1 is irreducible over the field of real numbers but is not over the field of
complex numbers (as x2 + 1 = (x+ i)(x− i)).

Recall the fundamental theorem of algebra: any polynomial with complex coefficients
decomposes into a product of linear polynomials. That is, given a polynomial P (x) =
anx

n+an−1x
n−1 + ...+a1x+a0, where an, an−1, ..., a1, a0 are complex numbers, there exist

complex numbers α1, ..., αn (not necessarily different) such that P (x) = an(x − α1)(x −
α2)....(x− αn).

The aim of the following two exercises is to understand how to present a polyno-
mial P (x) with real coefficients (i.e. P (x) = anx

n + an−1x
n−1 + ... + a1x + a0, where

an, an−1, ..., a1, a0 are real numbers) as a product of polynomials, each having real coeffi-
cients, which have the smallest possible degrees. That is, we want P (x) to be a product of
polynomials with real coefficients and which are indecomposable over the real numbers.

6.1. Exercise: Let P (x) be a polynomial with real coefficients, and z (a complex number)
a root of P (x). Prove that z̄ is a root of P (x) as well (hint: recall that the complex
conjugate of a sum of numbers equals the sum of the complex conjugates of those numbers,
e.g. z1 + z2 + z3 = z̄1 + z̄2 + z̄3).

6.2. Exercise: Use the above result, together with the fundamental theorem of algebra
and exercise 5.4, to prove the following statement:

Any polynomial with real coefficients can be presented as a product of polynomials
with real coefficients which are indecomposable over the real numbers, such that each of
these polynomial has degree at most 2.

6.3. Exercise: (bonus) Use the above statement to show that any real polynomial of odd
degree has a real root. Do not use the intermediate value theorem (MISHPAT ERECH
HABEINAIM).

6.4. Exercise: Decompose the polynomial x4 + 1 and present it as a product of polyno-
mials with real coefficients, each having degree at most 2 (hint: use the example 5.5).

E-mail address: ary.shaviv@weizmann.ac.il
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