
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 4

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, November 26th, in the tutorial. Sections marked as bonus are not mandatory.

1. Groups

1.1. Definition: A set G together with a map ∗ : G × G → G is called a group if the
following properties hold:

(1) ∀g1, g2, g3 ∈ G : (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) (associativity)
(2) ∃e ∈ G such that ∀g ∈ G : e ∗ g = g ∗ e = g (existence of a neutral element)
(3) ∀g ∈ G ∃g′ ∈ G such that g ∗ g′ = g′ ∗ g = e (existence of inverse element)

Claim: ∀g ∈ G ∃!g′ ∈ G such that g ∗ g′ = g′ ∗ g = e.

Proof: by (3) above such g′ exists, thus it is enough to show uniqueness: assume also
g′′ satisfies the equality, then using both (1) and (2) we have g′ = g′ ∗ e = g′ ∗ (g ∗ g′′) =
(g′ ∗ g) ∗ g′′ = e ∗ g′′ = g′′. �

Remark: by a similar proof one gets that the neutral element is unique (make sure you
understand).

Notation: the inverse element of g is usually denoted by g−1 and the neutral element
by 1G, or just 1 if G is clear from the context.

Definition: let G be a group. G is called commutative (or Abelian) if the operation ∗
is commutative, i.e. if ∀g1, g2 ∈ G : g1 ∗ g2 = g2 ∗ g1. In that case we often denote the
map ∗ by +, the inverse element of g by −g and the neutral element by 0G, or just 0.

Examples:

(1) Z with addition is an Abelian group.
(2) the residues modulo N ({0̄, 1̄, 2̄, 3̄, ..., N − 1}) with addition modulo N is an

Abelian group (we denote this group by Z/NZ).
(3) Z with multiplication is not a group. Proof: if it was then 1G ∗ 1G = 1G, i.e.

1G satisfies the equation a2 = a so it is either 0 or 1. If it is 0 then 0 · 7 = 7,
a contradiction. If it is 1 then there exists 0−1 ∈ Z such that 0 · 0−1 = 1, a
contradiction.

(4) any field (for instance Q,R and C) with multiplication is an not a group (the proof
is similar to the previous case - make sure you understand it).

(5) the residues modulo N with multiplication modulo N is not a group (the proof is
similar to case (3) - make sure you understand it).

1.2. Exercise: Check which of the following structures are groups. If it is a group show
that all the axioms hold, provide the neutral element, explain how to find the inverse to
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each element of the group and prove whether this group is Abelian or not. If it is not a
group prove it (it is enough to show that one of the axioms does not hold).

(1) The set of integers divisible by 7, with addition.
(2) The set of all non-zero complex numbers, with multiplication.
(3) The set of integers having residue 1 modulo 7, with multiplication.
(4) The set of rotations with respect to a point O on the plane, with the usual com-

position.
(5) The set of 2-by-2 complex matrices Mat2×2(C) with matrix addition.
(6) The set of 2-by-2 complex matrices Mat2×2(C) with matrix mutliplication.
(7) The set of finite strings one can build from the English Alpha Bet with concate-

nation (i.e. dog ∗cat = dogcat). Note that formally the empty set (the string built
from nothing) is such a string.

1.3. Exercise: denote the set of all invertible residues mod N by (Z/NZ)× (i.e.
(Z/NZ)× := {ā ∈ {0̄, 1̄, 2̄, 3̄, ..., N − 1}|∃b̄ ∈ {0̄, 1̄, 2̄, 3̄, ..., N − 1} : ā · b̄ = 1̄}). Prove
that (Z/NZ)× with multiplication mod N is a group. Note you not only have to show
all the axioms of 1.1, but to show that indeed multiplication mod N is a map from
(Z/NZ)× × (Z/NZ)× to (Z/NZ)×, i.e. that if two residues are invertible mod N so does
their multiplication mod N .

Definition: if G has finitely many elements the number of elements in it is called the
order of G, and denoted by ord(G). In that case G is called a finite group.

Remark: actually (Z/NZ)× with multiplication mod N is an Abelian group (make sure
you understand it). Also note that the number of elements in this group is exactly Euler’s
φ function, i.e. ord((Z/NZ)×) = |(Z/NZ)×| = φ(N).

2. Subgroups

Definition: let G be a group (i.e. a set with a given map ∗ : G×G→ G satisfying 1.1).
A subset H ⊂ G is called a subgroup of G if H is a group with respect to the restriction
of the map ∗.

Easy fact: 1G = 1H (make sure you understand).

2.1. Lagrange’s Theorem: let G be a finite group and H be a subgroup of G, then
ord(H)|ord(G).

The proof of this theorem is not difficult, but rather technical and requires the notation
of co-sets (which is by itself quite technical). It may be found (for instance) in Wikipedia
(both in English and in Hebrew) and requires no prior knowledge you do not have.

3. order of group elements

Notation: let g ∈ G be a group element and let n ∈ N, then g0 := 1G, gn := g∗g∗g∗...∗g
(n times), and g−n := (g ∗ g ∗ g ∗ ... ∗ g)−1 (n times).

3.1. Remark: let g ∈ G be a group element. By definition g−n = (gn)−1. Make sure you
understand why also g−n = (g−1)n. Note that we obtained a notation that ”behaves” like
power laws in numbers, e.g. for all a, b ∈ Z we have ga ∗ gb = ga+b, (ga)b = gab.
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3.2. Definition: let g ∈ G be a group element. The minimal positive integer n such that
gn = 1G (if such n exists) is called the order of g, and denoted by ord(g). In that case we
say that g has finite order, or g is an element of order n. If such n does not exists we say
that g has infinite order. Note that if g has finite order then g−1 = gord(g)−1.

3.3. Exercise: let G be a finite group and let g ∈ G. Prove that g has finite order and
moreover that for any n ∈ Z : gn = 1G if and only if ord(g)|n. Hint: in order to show the
first part consider all elements of the form {gn}n∈Z ⊂ G. In order to show the second use
division with remainder.

3.4. Exercise: let G be a group (not necessarily finite) and let g ∈ G. Denote < g >:=
{gn}n∈Z ⊂ G. Prove that < g > is a subgroup of G.

Definition: a group of the form < g > is called cyclic (i.e. a group G such that ∃g ∈ G
satisfying G =< g >). An element of a group satisfying G =< g > is called a generator
of G. Note that any cyclic group is Abelian and that if g is a generator then so is g−1.

Example: Z with addition is an cyclic group with 1 and −1 being all possible generators.

3.5. Exercise: let G be a group (not necessarily finite) and let g ∈ G be an element of
finite order (see 3.2). Prove that < g > is a finite group and that ord(< g >) = ord(g).

Remark: by this exercise and Lagrange’s Theorem we conclude that if G is a finite
group then for any g ∈ G: ord(g)|ord(G).

3.6. Exercise: (bonus) Prove Euler’s Theorem: Let N > 1 be an integer and a be
an integer which is co-prime to N , then: aφ(N) ≡ 1 (mod N). Make sure you only use
exercises and theorems we proved or quoted in this course (hint: using the relevant results
this should be neither long nor difficult).

4. Homomorphisms and Isomorphisms

Definition: let G1 be a group with a map ∗1 and G2 be a group with a map ∗2. A
map φ : G1 → G2 is called a group homomorphism if φ(1G1) = 1G2 and for any a, b ∈ G1:
φ(a ∗1 b) = φ(a) ∗2 φ(b).

Definition: a group homomorphism is called a group isomorphism if it is one to one
and onto.

Definition: we say that G is isomorphic to H if there exists a group isomorphism from
G to H. In that case we write G ∼= H.

4.1. Exercise: prove that isomorphism is an equivalence relation (hint: reflexivity is easy,
for symmetry show that if φ : G → H is a one to one and onto group homomorphism
then so is φ−1 : H → G, and transitivity is shown by maps composition).

4.2. Example: let G be an Abelian group, and let H be a group such that G ∼= H. Let
us show that H is Abelian: let h1, h2 ∈ H. We need to show that h1 ∗H h2 = h2 ∗H h1.
There exists a group isomorphism φ : G→ H. It is surjective so there are g1, g2 ∈ G such
that φ(g1) = h1 and φ(g2) = h2. Now using the properties of group homomorphism and
the commutativity of G we get h1 ∗H h2 = φ(g1) ∗H φ(g2) = φ(g1 ∗G g2) = φ(g2 ∗G g1) =
φ(g2) ∗H φ(g2) = h2 ∗H h1. �
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4.3. Exercise: let G be a cyclic group, and let H be a group such that G is isomorphic
to H. Prove that H is cyclic.

4.4. Exercise: let G be a group with ord(G) = 36, and assume it contains a unique
subgroup G′ such that ord(G′) = 9. Let H be a group that is isomorphic to G. Prove
that H contains a unique subgroup H ′ such that ord(H ′) = 9.

Important remark: 4.1-4.4 are examples of the general idea of category theory (here in
the category of groups): two isomorphic objects are ”the same” for all purposes in this
category (e.g. two isomorphic groups are ”the same” for all group related purposes). We
want to stress the fact the this ”being the same” property only holds inside the given
category, e.g. two isomorphic groups are ”the same” only as groups:

4.5. Exercise: prove that the set of integers divisible by 7 with the operation of addition
(you showed in 1.2 that this is a group) is isomorphic to the group of integers with
addition.

We ”feel” that the set of integers divisible by 7 is not ”the same” as the set of all
integers in general, though they are ”the same” (with addition) as groups. Next semester
we will see that while the set of all integers is a Ring with a unit (a structure we will
define), the set of all integers divisible by 7 is not.

The following exercise shows us that ”being the same as sets” does not mean ”being
the same as groups”:

4.6. Exercise: recall the fact that Q is countable, i.e. it is isomorphic to Z as sets. Both
Q and Z are groups with the standard addition, and we saw that Z is cyclic. Prove that Q
(with addition) is not cyclic. It follows from 4.3 that Q and Z are non-isomorphic groups,
and we conclude that although Q and Z are ”the same” as sets, they are ”different” as
groups.

The following exercise shows us that ”being the same as groups” does not mean ”being
the same” in general, as R is a field, where R>0 is not:

4.7. Exercise: (bonus) Consider the group R with addition (real numbers with the op-
eration of addition), and the group R>0 with multiplication (positive real numbers with
the operation of multiplication). Check that both structures are indeed groups, and prove
that they are isomorphic via the map exp : R→ R>0 (i.e. x 7→ ex).

E-mail address: ary.shaviv@weizmann.ac.il
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