
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 5

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, December 3rd, in the tutorial. Sections marked as bonus are not mandatory.

1. The symmetric group

1.1. Definition: Let X be a set. We define the group Sym(X) to be the set of all one to
one and onto functions from X to X, with function composition.

Remark: one easily sees that indeed Sym(X) is a group, with the identity function
on X being the neutral element (make sure you understand that function composition is
indeed associative and that moreover any one to one and onto function has an inverse).

1.2. Notation: If X = {1, 2, ..., n} we denote Sn := Sym(X). Sn is the group of per-
mutations of n elements (make sure you understand why ord(Sn) = n!). We denote the
invertible function σ : {1, 2, ..., n} → {1, 2, ..., n} by(

1 2 3 . . n
σ(1) σ(2) σ(3) . . σ(n)

)
∈ Sn,

e.g.

(
1 2 3
2 1 3

)
∈ S3 is the permutation that switches between the first and the second

elements, and does nothing to the third.

1.3. Cycles notation: Sometimes it is easier to use cycles notation: by (i1i2i3...ik) we
mean the permutation that sends i1 to i2, i2 to i3,...,ik−1 to ik and ik to i1 (and does

nothing to all other elements). For instance

(
1 2 3
2 1 3

)
∈ S3 will also be denoted by

(12). Note that if two cycles (i1i2i3...ik) and (j1j2j3...jl) contain no common element (i.e.
for any n ∈ {1, 2, 3..., k} and any m ∈ {1, 2, 3, ..., l}: in 6= jm) then they commute (i.e.
(i1i2i3...ik)(j1j2j3...jl) = (j1j2j3...jl)(i1i2i3...ik)).

1.4. Remark: Any permutation can be written in a cycles notation. Working through
this work sheet you should be convinced of this fact.

1.5. Example: In S5 we have ((12)(34)) is the permutation switching the first and the
second elements, switching the third and the fourth elements, and does nothing to the
fifth. The permutation (1524) sends the first element to the fifth, the fifth to the second,
the second to the fourth, the fourth to the first, and does nothing to the third. We may
calculate:

((12)(34))(1524) =

(
1 2 3 4 5
2 1 4 3 5

)(
1 2 3 4 5
5 4 3 1 2

)
=

(
1 2 3 4 5
5 3 4 2 1

)
= (15)(234),

but

(1524)((12)(34)) =

(
1 2 3 4 5
5 4 3 1 2

)(
1 2 3 4 5
2 1 4 3 5

)
=

(
1 2 3 4 5
4 5 1 3 2

)
= (143)(25),

hence S5 is not commutative (not Abelian).
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1.6. Claim: Sn is commutative if and only if n = 2.

Proof: S2 = {
(

1 2
1 2

)
,

(
1 2
2 1

)
}. As it has only one element which is not the identity

function (the neutral element of the group), and as any element commute with itself and
with the neutral element, then all elements commute, i.e. S2 is commutative.

Now assume n > 2. Take σ = (12) ∈ Sn and τ = (23) ∈ Sn. One may calculate στ =
(123) but τσ = (132), hence σ and τ do not commute, and Sn is not commutative. �

1.7. Exercise: Prove that any non-Abelian group has order at least 6, i.e. we may think
of S3 as the ”smallest” non-Abelian group (hint: starting with a non-Abelian group G
you have a, b ∈ G such that ab 6= ba. You may now prove that all the elements in the set
{1G, a, b, ab, ba, aba} ⊂ G are different. If you get stuck in the middle try to use what you
already proved and say something about the order of the element a).

1.8. We naturally think of the group of permuting n elements (Sn) as a subgroup of the
group of permuting n+1 elements (Sn+1). However this is not accurate: a group morphism
which is one to one is called an embedding. We may find many group morphisms from
Sn to Sn+1 that are one to one, i.e. there are many ways to embed Sn inside Sn+1. Let
us explain:

A general element σ ∈ Sn may be written as

(
1 2 3 . . n

σ(1) σ(2) σ(3) . . σ(n)

)
. So we

can send it to

(
1 2 3 . . n n+ 1

σ(1) σ(2) σ(3) . . σ(n) n+ 1

)
∈ Sn+1. In other word we define a

map φ : Sn → Sn+1 that says ”permute the first n elements like you should have if the
last one was not there, and leave the last one untouched”.

Now note that another map would be to send σ to(
1 2 3 . . n n+ 1
1 σ(1) + 1 σ(2) + 1 σ(3) + 1 . . σ(n) + 1

)
∈ Sn+1. This is a map

φ′ : Sn → Sn+1 that says ”permute the last n elements like you should have if
the first one was not there, and leave the first one untouched”.

1.9. Exercise: Prove that φ defined above is indeed a group morphism, and that it is
indeed one to one (hint: it may seems difficult but once you understand what is going
on it is very easy to show that all the axioms of a group morphism hold. In order to
show φ is one to one find an inverse function from the image of φ back to Sn - note
that this is not a function from all of Sn+1, but only from the subset of Sn+1 defined by
{σ ∈ Sn+1|∃τ ∈ Sn : φ(τ) = σ}). This subset is a subgroup of Sn+1 (this is true in general
- the image of any group homomorphism is a subgroup of the range, it is an easy exercise
you do not have to do).

1.10. Exercise: let m < n be two natural numbers. Assume that ψ : Sm → Sn is a one to
one group morphism (i.e. ψ is an embedding of Sm into Sn). Let µ ∈ Sn be any element.
Prove that ψ′ : Sm → Sn defined by: ∀τ ∈ Sm : ψ′(τ) = µ−1ψ(τ)µ is an embedding as
well (i.e. ψ′ is a one to one group morphism).
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1.11. Example: let us show that starting from one embedding in 1.10 we may get a

different one: we take ψ : S2 → S3 given by ψ(τ) =

(
1 2 3

τ(1) τ(2) 3

)
, and µ ∈ S3 given

by µ = (13) (i.e. the permutation switching between the first and third elements and
does nothing to the second). We want to calculate for any τ ∈ S2: ψ

′(τ) = µ−1ψ(τ)µ.
First we note that µ−1 = µ, so we need to calculate ψ′(τ) = µψ(τ)µ = (13)ψ(τ)(13). As
S2 contains only two elements (the identity and (12)) we calculate both straight forward:

ψ′(1S2) = (13)

(
1 2 3

1S2(1) 1S2(2) 3

)
(13) = (13)

(
1 2 3
1 2 3

)
(13) = 1S3 ,

ψ′((12)) = (13)ψ((12))(13) = (13)

(
1 2 3
2 1 3

)
(13) =

(
1 2 3
1 3 2

)
= (23).

But ψ((12)) = (12) ∈ S3, thus ψ 6= ψ′, i.e. these are two different embeddings of S2 into
S3. Note that this example is a special case of 1.8.

Remark: we saw that Sn may be embedded in Sn+1 in many different ways, and hence
Sn is not a subgroup of Sn+1 in a canonical way. This is very similar to the fact that R
may be embedded in R2 (as vector spaces) in many different ways, and hence R is not a
subspace of R2 in a canonical way.

2. transpositions and the sign of a permutation

Recall the commutative group of residues modulo 2 with addition: the set {0̄, 1̄} and
the operation is 0̄ + 0̄ = 1̄ + 1̄ = 0̄, 0̄ + 1̄ = 1̄. We denote this group by Z/2Z.

2.1. Definition: a cycle in Sn of length 2 is called a transposition (i.e. if i1, i2 ∈
{1, 2, .., n} and i1 6= i2 then (i1i2) ∈ Sn is a transposition - it switches i1 and i2 and
does nothing to all other elements).

2.2. Theorem: Any permutation σ ∈ Sn can be presented as a composition of finitely
many transpositions. This presentation is not unique, however the parity of the number
of transpositions is unique, i.e. if σ = Πn

i=1(aibi) = Πm
j=1(cjdj) then n−m ≡ 0 (mod 2).

Remark: (1) As always we define the composition of zero transpositions to be the iden-
tity element of Sn (the permutation that does nothing). (2) We will not prove Theorem
2.2 in this course, however you may use it.

2.3. Definition: we define a function sgn : Sn → Z/2Z by sgn(σ) = 0̄ if σ can be
presented as a composition of an even number of transpositions, and sgn(σ) = 1̄ if σ can
be presented as a composition of an odd number of transpositions. By Theorem 2.2 this
function is well defined.

2.4. Exercise: prove that sgn : Sn → Z/2Z is a group homomorphism.

3. motivation

In the future we will see some examples where the groups Sn are extremely useful (e.g.
when we will introduce the Determinant function). The main importance of these groups
when we discuss abstract algebra and Group Theory in general is the following theorem:

3.1. Cayley’s Theorem: For any finite group G there esixts n ∈ N such that G is iso-
morphic (a group isomorphism) to a subgroup of Sn.
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3.2. Exercise: (bonus) Let us prove Cayley’s Theorem: we define a map φ : G →
Sym(G) (in Sym(G) we consider G as a set, and forget it has a group structure) by
φ(g) = σg ∈ Sym(G), where σg(h) := g ∗ h ∈ G (for any h ∈ G). Prove that φ is a group
homomorphism, and that it is one to one. Thus G is isomorphic to φ(G) (the image of G
under φ), and φ(G) is a subgroup of Sym(G) (this is true in general - the image of any
group homomorphism is a subgroup of the range, it is an easy exercise). Finally taking n
to be ord(G) we have Sym(G) = Sord(G) = Sn, and we are done.

3.3. Exercise: (bonus) We saw that Z/NZ (the set of residues modulo N with addition
modulo N) is an Abelian group. Find a subgroup of SN that is isomorphic to Z/NZ
(hint: use the fact that Z/NZ is cyclic).

Remark: solving bonus exercises 3.2 and 3.3 is independent, you do not need one in
order to solve the other. I highly recommend to solve 3.2 - although it is not hard it has
great importance, both mathematically and historically.

E-mail address: ary.shaviv@weizmann.ac.il
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