ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 7

Please submit all exercises below in hard copy (either in English or in Hebrew) next Thursday, December $24^{\text {th }}$, in the tutorial. Sections marked as bonus are not mandatory.

1. InNer products in \mathbb{R}^{n}

Let $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ be some basis of \mathbb{R}^{n}. We want to define a function that will enable us to say that the length of each e_{i} is 1 , and to say that each two distinct basis vectors are orthogonal.
1.1. Definition: let $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ be some basis of \mathbb{R}^{n}. We define a function

$$
<\cdot, \cdot>: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

by:

$$
<v, w>=\sum_{i=1}^{n} v_{i} w_{i},
$$

where v_{i} (respectively w_{i}) is the $i^{\text {th }}$ coordinate of v (resp. w) in the basis $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ (i.e. $v=\sum_{i=1}^{n} v_{i} e_{i}, w=\sum_{i=1}^{n} w_{i} e_{i}$). We call this function the inner product on \mathbb{R}^{n} with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, and $\langle v, w\rangle$ is called the inner product of v and w.
1.2. Definition: we call two vectors in $v, w \in \mathbb{R}^{n}$ orthogonal if $\langle v, w\rangle=0$.
1.3. Exercise: let $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ be some basis of \mathbb{R}^{n} and $<\cdot, \cdot>: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ the corresponding inner product. Prove the following properties:
(1) inner product is linear in all variables, i.e. for any $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{R}$ and any $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{R}^{n}:$

$$
\begin{gathered}
<\alpha_{1} v_{1}+\alpha_{2} v_{2}, \beta_{1} w_{1}+\beta_{2} w_{2}>= \\
\alpha_{1} \beta_{1}<v_{1}, w_{1}>+\alpha_{1} \beta_{2}<v_{1}, w_{2}>+\alpha_{2} \beta_{1}<v_{2}, w_{1}>+\alpha_{2} \beta_{2}<v_{2}, w_{2}>.
\end{gathered}
$$

(2) inner product is symmetric, i.e. for any $v, w \in \mathbb{R}^{n}:\langle v, w\rangle=\langle w, v\rangle$.
(3) for any $v \in \mathbb{R}^{n}:\langle v, v\rangle \geq 0$ and moreover $\langle v, v\rangle=0$ if and only if $v=0$ (you may use the fact that the coordinates of the zero element of \mathbb{R}^{n} in any basis are all zeroes).
(4) for any $v \in \mathbb{R}^{n}:\left\langle v, e_{i}\right\rangle=v_{i}$ (where v_{i} is the $i^{\text {th }}$ coordinate of v in the basis $\left.\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}\right)$, i.e. $v=\sum_{i=1}^{n}<v, e_{i}>e_{i}$.

Motivated by section (3) in exercise 1.3 we give the following definitions:
1.4. Definition: given an inner product on \mathbb{R}^{n} we define a function $|\cdot|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ by $|v|=\sqrt{\langle v, v\rangle}$. We call $|v|$ the length (or the norm) of v.
1.5. Definition: given an inner product on \mathbb{R}^{n} we define a function dist : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}>0$ by $\operatorname{dist}(v, w)=|v-w|$. We call this function the distance function, and using section ($\overline{1}$) of exercise 1.3 it is easy to see that it is symmetric (i.e. $\operatorname{dist}(v, w)=\operatorname{dist}(w, v)$).

It is important to stress that all the above notions (inner product, orthogonality, length and distance) are strongly dependent on the basis chosen. The following exercise illustrates this fact.
1.6. Exercise: let $v, w \in \mathbb{R}^{2}$ be two (non-zero) linearly independent vectors. In each of the following bases of \mathbb{R}^{2} answer the following questions: what is the norm of v ? What is the norm of w ? Are v and w orthogonal? What is the distance between v and w ? What is the inner product of v and w ?
(1) $\{v, w\}$.
(2) $\{2 v, w\}$.
(3) $\{v+w, v-w\}$.
(4) $\{v, v+w\}$.

2. Geometric intuition (ANGLes)

2.1. Exercise: let $\left\{e_{1}, e_{2}\right\}$ be some basis of \mathbb{R}^{2} and $<\cdot, \cdot>$ its corresponding inner product. Prove that for any two non-zero $v, w \in \mathbb{R}^{2}$:

$$
\left|\frac{\langle v, w>}{|v| \cdot|w|}\right| \leq 1 .
$$

Hint: it is enough to show that $\left(\frac{\langle v, w\rangle}{|v| \cdot|w|}\right)^{2} \leq 1$ or that $\left.(|v| \cdot|w|)^{2}-(<v, w\rangle\right)^{2} \geq 1$.
2.2. Definition: by exercise 2.1 for any two non-zero vectors v, w in \mathbb{R}^{2} there exists a unique real number $\theta \in[0, \pi]$ such that $\cos (\theta)=\frac{\langle v, w\rangle}{|v| \cdot|w|}$. We call this number the angle between v and w.

Now we have some geometric intuition for the inner product in \mathbb{R}^{2} : it can now we written as $\langle v, w\rangle=|v| \cdot|w| \cdot \cos (\theta)$. We note that $|v| \cos (\theta)$ can be realized as the length of the projection of v on the line (one dimensional space) spanned by w, and vise versa $|w| \cos (\theta)$ can be realized as the length of the projection of w on the line spanned by v.

This intuition is true for \mathbb{R}^{n} in general. The inequality you proved in exercise 2.1 also holds there, and the angle θ can be visualized as the angke between v and w in the plain (two dimensional space) spanned by both.
2.3. Exercise: let us show that the notion of an angle strongly depends on the basis chosen: what is the angle between the two vectors v and w of exercise 1.6 in each basis (1),(2),(3) and (4)?

3. Transposed matrix

3.1. Definition: let $A \in M a t_{n \times n}(\mathbb{R})$. We define the transposed matrix $A^{t} \in M a t_{n \times n}(\mathbb{R})$ by $\left(A^{t}\right)_{i j}=A_{j i}$ (i.e. we "reflect" the matrix with respect to its main diagonal such that its columns become its rows and vise versa).
3.2. Exercise: take some linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and fix a basis $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n}. We now have the notion of an inner product and also a matrix $A \in M a t_{n \times n}(\mathbb{R})$ that corresponds to f with respect to this basis. Prove that for any $v, w \in \mathbb{R}^{n}$:

$$
<A v, w>=<v, A^{t} w>
$$

Notation: after choosing a basis of \mathbb{R}^{n} we can write any vector v as a column $\left(\begin{array}{c}v_{1} \\ v_{2} \\ \cdot \\ \cdot \\ \cdot \\ v_{n}\end{array}\right)$, and then we can calculate

$$
<v, w>=<\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right),\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\cdot \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right)>=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right)^{t} \cdot\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\cdot \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right)=\left(\begin{array}{lllll}
v_{1} & v_{2} & \cdot & \cdot & \cdot \\
v_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\cdot \\
\cdot \\
\cdot \\
w_{n}
\end{array}\right)
$$

where in the last two expressions we have matrix multiplication.

4. Distance preserving linear maps

We fix a basis of \mathbb{R}^{n}.
4.1. Definition: We call a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ distance preserving (or Orthogonal) if for any two vectors $v, w \in \mathbb{R}^{n}: \operatorname{dist}(v, w)=\operatorname{dist}(f(v), f(w))$.
4.2. Definition: We call a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ norm preserving if for any vector $v \in \mathbb{R}^{n}:|v|=|f(v)|$.
4.3. Exercise: prove that a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is distance preserving if and only if it is norm preserving (the "if" part is easy, for the "only if" part use the fact that $|v|=\operatorname{dist}(v, 0)$ and exercise 3.1 of homework 3$)$.
4.4. Lemma: if f is distance preserving with respect to some basis of \mathbb{R}^{n} then it is distance preserving with respect to any basis of \mathbb{R}^{n}.

Remark: we will not prove this lemma in this course, however you may use it.
4.5. Theorem: a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is norm preserving if and only if for any two vectors $v, w \in \mathbb{R}^{n}:<v, w>=<f(v), f(w)>$ (i.e. f is inner product preserving). By the above Lemma it is independent of the basis chosen.

Proof: assume f is inner product preserving, then $|f(v)|=\sqrt{\langle f(v), f(v)\rangle}=$ $\sqrt{\langle v, v\rangle}=|v|$, thus f is norm preserving.

Assume f is norm preserving. Then on the one hand

$$
\begin{gathered}
|f(v+w)|^{2}=|v+w|^{2}= \\
<v+w, v+w>^{2}=|v|^{2}+|w|^{2}+2<v, w>= \\
|f(v)|^{2}+|f(w)|^{2}+2<v, w>
\end{gathered}
$$

On the other hand

$$
\begin{gathered}
|f(v+w)|^{2}=<f(v+w), f(v+w)>= \\
<f(v)+f(w), f(v)+f(w)>= \\
<f(v), f(v)>+<f(w), f(w)>+2<f(v), f(w)>= \\
|f(v)|^{2}+|f(w)|^{2}+2<f(v), f(w)> \\
3
\end{gathered}
$$

From the equality of these two expressions it follows that $\langle v, w\rangle=\langle f(v), f(w)\rangle$.
4.6. Exercise: prove that an orthogonal map preserves angles between vectors, i.e. for any orthogonal map f and for any two non-zero vectors v, w : the angle between v and w equals the angle between $f(v)$ and $f(w)$ (hint: this is a one line proof).
4.7. Theorem: let f be a linear map, $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ some basis of \mathbb{R}^{n} and A the corresponding matrix of f. Then f is norm preserving if and only if $A^{t} A=I d_{n \times n}$.
4.8. Exercise: (bonus) prove Theorem 4.7. Instructions: use Theorem 4.5 and exercise 3.2. Then the "if" part is very easy. For the "only if" part compute $\left\langle e_{i}, v\right\rangle=<A e_{i}, A v>$ and use exercise 1.3 .
4.9. We quote two Theorems without giving their proofs:
(1) For any $A, B \in M a t_{n \times n}(\mathbb{R}): \operatorname{Det}(A B)=\operatorname{Det}(A) \operatorname{Det}(B)(\operatorname{Det}$ is multiplicative).
(2) For any $A \in \operatorname{Mat}_{n \times n}(\mathbb{R}): \operatorname{Det}\left(A^{t}\right)=\operatorname{Det}(A)$.
4.10. Corollary: if $A^{t} A=I d_{n \times n}$ then $\operatorname{Det}(A)= \pm 1$.

Proof: $1=\operatorname{Det}\left(I d_{n \times n}\right)=\operatorname{Det}\left(A^{t} A\right)=\operatorname{Det}\left(A^{t}\right) \operatorname{Det}(A)=\operatorname{Det}(A)^{2}$.
Remark: Intuitively this make sense: a map that preserves distances should not blow up space or shrink it, so it should have determinant ± 1. An orthogonal map with determinant 1 (respectively -1) is called orientation preserving (resp. orientation changing).
4.11. Exercise: fix some basis of \mathbb{R}^{n}. By doing so we have an inner product $<\because>$. Fix some non-zero $\alpha \in \mathbb{R}^{n}$. Consider the map $r_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $r_{\alpha}(\beta)=\beta-\frac{\langle\alpha, \beta\rangle}{\langle\alpha, \alpha\rangle} \alpha$.
(1) prove that r_{α} is linear.
(2) prove that r_{α} is orthogonal.
(3) prove that $r_{\alpha} \circ r_{\alpha}=I d$.
(4) prove that if α and β are orthogonal then $r_{\alpha}(\beta)=\beta$.
(5) prove that if α and β are proportional (i.e. there exists some $k \in \mathbb{R}$ such that $\beta=k \alpha)$ then $r_{\alpha}(\beta)=-\beta$.
(6) (bonus) interpret r_{α} geometrically when $n=2$ and $n=3$ (i.e. in \mathbb{R}^{2} and \mathbb{R}^{3}).

5. Orthogonal maps in \mathbb{R}^{2}

You showed in exercise 4.1 of homework 6 that rotation around the origin has determinant 1 and that reflection with respect to any line passing through the origin has determinant -1 . We can easily see that these are indeed orthogonal maps as they preserve norm (make sure you understand why!). Let us show that any orthogonal map in the plain is either a rotation or a reflection.

Choose some basis $\left\{e_{1}, e_{2}\right\}$ of \mathbb{R}^{2}. Assume f is an orthogonal map and that it is given by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. By Theorem 4.7 we have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and so

$$
\begin{gathered}
a^{2}+b^{2}=1 \\
c^{2}+d^{2}=1 \\
a b+c d=0 \\
4
\end{gathered}
$$

We can find a (unique) real number $0 \leq \alpha<2 \pi$ such that:

$$
a=\cos (\alpha), c=\sin (\alpha), b= \pm \sin (\alpha), d=\mp \cos (\alpha),
$$

where the plus minus signs should be taken respectively.
Now we have two options, either $\operatorname{Det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=1$ or $\operatorname{Det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=-1$.
The first will correspond to choosing $b=-\sin (\alpha), d=a$ and so we have $\left(\begin{array}{cc}\cos (\alpha) & -\sin (\alpha) \\ \sin (\alpha) & \cos (\alpha)\end{array}\right)$, i.e. f is rotation around the origin in angle α counterclockwise.
In the second case we will get $b=\sin (\alpha), d=-a$ and so we have $\left(\begin{array}{cc}\cos (\alpha) & \sin (\alpha) \\ \sin (\alpha) & -\cos (\alpha)\end{array}\right)$, i.e. f is reflection with respect to the line given by the equation $-\sin \left(\frac{\alpha}{2}\right) e_{1}+\cos \left(\frac{\alpha}{2}\right) e_{2}=0$ (the line spanned by the vector $\cos \left(\frac{\alpha}{2}\right) e_{1}+\sin \left(\frac{\alpha}{2}\right) e_{2}$).
5.1. Exercise: consider \mathbb{C} as a two dimensional vector space over \mathbb{R}, and let $\alpha \in \mathbb{C}$. Define a map $f: \mathbb{C} \rightarrow \mathbb{C}$ by $f(z)=\alpha z$ (i.e. f is the map that takes any complex number and multiplies it by α).
(1) prove that f is linear (you may use the fact that multiplying complex numbers is a linear operation).
(2) calculate $\operatorname{Det}(f)$.
(3) for what α 's is f an orthogonal map? Among these α 's when is f orientation preserving and when it is not?
(4) for the cases when f is orthogonal - interpret f geometrically in the complex plain (i.e. explain in a short sentence what does f do geometrically).

6. A remark about Euclidean geometry

In previous weeks we did some exercises about what we called "reflections", mainly in \mathbb{R}^{2}. In fact we were cheating a bit - in order to define what is a reflection with respect to a given line we must have a notion of distance. We always had this notion in mind, though we never defined it precisely. For example when we said "reflection with respect to the line $x=y$ " we had in mind a basis $\{x, y\}$, with its inner product, norm, distance and angle functions defined above. Similar idea holds for what we called "rotations".

E-mail address: ary.shaviv@weizmann.ac.il

