
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 7

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, December 24th, in the tutorial. Sections marked as bonus are not mandatory.

1. Inner products in Rn

Let {e1, e2, e3, ..., en} be some basis of Rn. We want to define a function that will enable
us to say that the length of each ei is 1, and to say that each two distinct basis vectors
are orthogonal.

1.1. Definition: let {e1, e2, e3, ..., en} be some basis of Rn. We define a function

< ·, · >: Rn × Rn → R
by:

< v,w >= Σn
i=1viwi,

where vi (respectively wi) is the ith coordinate of v (resp. w) in the basis {e1, e2, e3, ..., en}
(i.e. v = Σn

i=1viei, w = Σn
i=1wiei). We call this function the inner product on Rn with

respect to the basis {e1, e2, ..., en}, and < v,w > is called the inner product of v and w.

1.2. Definition: we call two vectors in v, w ∈ Rn orthogonal if < v,w >= 0.

1.3. Exercise: let {e1, e2, e3, ..., en} be some basis of Rn and < ·, · >: Rn × Rn → R the
corresponding inner product. Prove the following properties:

(1) inner product is linear in all variables, i.e. for any α1, α2, β1, β2 ∈ R and any
v1, v2, w1, w2 ∈ Rn:

< α1v1 + α2v2, β1w1 + β2w2 >=

α1β1 < v1, w1 > +α1β2 < v1, w2 > +α2β1 < v2, w1 > +α2β2 < v2, w2 > .

(2) inner product is symmetric, i.e. for any v, w ∈ Rn: < v,w >=< w, v >.
(3) for any v ∈ Rn: < v, v >≥ 0 and moreover < v, v >= 0 if and only if v = 0 (you

may use the fact that the coordinates of the zero element of Rn in any basis are
all zeroes).

(4) for any v ∈ Rn: < v, ei >= vi (where vi is the ith coordinate of v in the basis
{e1, e2, e3, ..., en}), i.e. v = Σn

i=1 < v, ei > ei.

Motivated by section (3) in exercise 1.3 we give the following definitions:

1.4. Definition: given an inner product on Rn we define a function | · | : Rn → R≥0 by
|v| = √< v, v >. We call |v| the length (or the norm) of v.

1.5. Definition: given an inner product on Rn we define a function dist : Rn×Rn → R≥0
by dist(v, w) = |v−w|. We call this function the distance function, and using section (1)
of exercise 1.3 it is easy to see that it is symmetric (i.e. dist(v, w) = dist(w, v)).

It is important to stress that all the above notions (inner product, orthogonality, length
and distance) are strongly dependent on the basis chosen. The following exercise illus-
trates this fact.
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1.6. Exercise: let v, w ∈ R2 be two (non-zero) linearly independent vectors. In each of
the following bases of R2 answer the following questions: what is the norm of v? What is
the norm of w? Are v and w orthogonal? What is the distance between v and w? What
is the inner product of v and w?

(1) {v, w}.
(2) {2v, w}.
(3) {v + w, v − w}.
(4) {v, v + w}.

2. Geometric intuition (angles)

2.1. Exercise: let {e1, e2} be some basis of R2 and < ·, · > its corresponding inner
product. Prove that for any two non-zero v, w ∈ R2:∣∣∣∣< v,w >

|v| · |w|

∣∣∣∣ ≤ 1.

Hint: it is enough to show that (<v,w>|v|·|w| )
2 ≤ 1 or that (|v| · |w|)2 − (< v,w >)2 ≥ 1.

2.2. Definition: by exercise 2.1 for any two non-zero vectors v, w in R2 there exists a
unique real number θ ∈ [0, π] such that cos(θ) = <v,w>

|v|·|w| . We call this number the angle

between v and w.

Now we have some geometric intuition for the inner product in R2: it can now we
written as < v,w >= |v| · |w| · cos(θ). We note that |v|cos(θ) can be realized as the length
of the projection of v on the line (one dimensional space) spanned by w, and vise versa
|w|cos(θ) can be realized as the length of the projection of w on the line spanned by v.

This intuition is true for Rn in general. The inequality you proved in exercise 2.1 also
holds there, and the angle θ can be visualized as the angke between v and w in the plain
(two dimensional space) spanned by both.

2.3. Exercise: let us show that the notion of an angle strongly depends on the basis
chosen: what is the angle between the two vectors v and w of exercise 1.6 in each basis
(1),(2),(3) and (4)?

3. Transposed matrix

3.1. Definition: let A ∈ Matn×n(R). We define the transposed matrix At ∈ Matn×n(R)
by (At)ij = Aji (i.e. we ”reflect” the matrix with respect to its main diagonal such that
its columns become its rows and vise versa).

3.2. Exercise: take some linear function f : Rn → Rn and fix a basis {e1, e2, e3, ..., en} of
Rn. We now have the notion of an inner product and also a matrix A ∈Matn×n(R) that
corresponds to f with respect to this basis. Prove that for any v, w ∈ Rn:

< Av,w >=< v,Atw > .
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Notation: after choosing a basis of Rn we can write any vector v as a column
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and then we can calculate
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where in the last two expressions we have matrix multiplication.

4. Distance preserving linear maps

We fix a basis of Rn.

4.1. Definition: We call a linear map f : Rn → Rn distance preserving (or Orthogonal)
if for any two vectors v, w ∈ Rn: dist(v, w) = dist(f(v), f(w)).

4.2. Definition: We call a linear map f : Rn → Rn norm preserving if for any vector
v ∈ Rn: |v| = |f(v)|.

4.3. Exercise: prove that a linear map f : Rn → Rn is distance preserving if and only
if it is norm preserving (the ”if” part is easy, for the ”only if” part use the fact that
|v| = dist(v, 0) and exercise 3.1 of homework 3).

4.4. Lemma: if f is distance preserving with respect to some basis of Rn then it is
distance preserving with respect to any basis of Rn.

Remark: we will not prove this lemma in this course, however you may use it.

4.5. Theorem: a linear map f : Rn → Rn is norm preserving if and only if for any two
vectors v, w ∈ Rn: < v,w >=< f(v), f(w) > (i.e. f is inner product preserving). By the
above Lemma it is independent of the basis chosen.

Proof: assume f is inner product preserving, then |f(v)| =
√
< f(v), f(v) > =√

< v, v > = |v|, thus f is norm preserving.

Assume f is norm preserving. Then on the one hand

|f(v + w)|2 = |v + w|2 =

< v + w, v + w >2= |v|2 + |w|2 + 2 < v,w >=

|f(v)|2 + |f(w)|2 + 2 < v,w > .

On the other hand
|f(v + w)|2 =< f(v + w), f(v + w) >=

< f(v) + f(w), f(v) + f(w) >=

< f(v), f(v) > + < f(w), f(w) > +2 < f(v), f(w) >=

|f(v)|2 + |f(w)|2 + 2 < f(v), f(w) > .
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From the equality of these two expressions it follows that < v,w >=< f(v), f(w) >. �

4.6. Exercise: prove that an orthogonal map preserves angles between vectors, i.e. for
any orthogonal map f and for any two non-zero vectors v, w: the angle between v and w
equals the angle between f(v) and f(w) (hint: this is a one line proof).

4.7. Theorem: let f be a linear map, {e1, e2, ..., en} some basis of Rn and A the corre-
sponding matrix of f . Then f is norm preserving if and only if AtA = Idn×n.

4.8. Exercise: (bonus) prove Theorem 4.7. Instructions: use Theorem 4.5 and exercise
3.2. Then the ”if” part is very easy. For the ”only if” part compute < ei, v >=< Aei, Av >
and use exercise 1.3.

4.9. We quote two Theorems without giving their proofs:

(1) For any A,B ∈Matn×n(R):Det(AB) = Det(A)Det(B) (Det is multiplicative).

(2) For any A ∈Matn×n(R): Det(At) = Det(A).

4.10. Corollary: if AtA = Idn×n then Det(A) = ±1.

Proof: 1 = Det(Idn×n) = Det(AtA) = Det(At)Det(A) = Det(A)2.

Remark: Intuitively this make sense: a map that preserves distances should not blow up
space or shrink it, so it should have determinant±1. An orthogonal map with determinant
1 (respectively -1) is called orientation preserving (resp. orientation changing).

4.11. Exercise: fix some basis of Rn. By doing so we have an inner product < ·.· >. Fix
some non-zero α ∈ Rn. Consider the map rα : Rn → Rn defined by rα(β) = β − <α,β>

<α,α>
α.

(1) prove that rα is linear.
(2) prove that rα is orthogonal.
(3) prove that rα ◦ rα = Id.
(4) prove that if α and β are orthogonal then rα(β) = β.
(5) prove that if α and β are proportional (i.e. there exists some k ∈ R such that

β = kα) then rα(β) = −β.
(6) (bonus) interpret rα geometrically when n = 2 and n = 3 (i.e. in R2 and R3).

5. Orthogonal maps in R2

You showed in exercise 4.1 of homework 6 that rotation around the origin has de-
terminant 1 and that reflection with respect to any line passing through the origin has
determinant -1. We can easily see that these are indeed orthogonal maps as they preserve
norm (make sure you understand why!). Let us show that any orthogonal map in the
plain is either a rotation or a reflection.

Choose some basis {e1, e2} of R2. Assume f is an orthogonal map and that it is given

by the matrix

(
a b
c d

)
. By Theorem 4.7 we have

(
a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
, and so

a2 + b2 = 1
c2 + d2 = 1
ab+ cd = 0

.
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We can find a (unique) real number 0 ≤ α < 2π such that:

a = cos(α), c = sin(α), b = ±sin(α), d = ∓cos(α),

where the plus minus signs should be taken respectively.

Now we have two options, either Det

(
a b
c d

)
= 1 or Det

(
a b
c d

)
= −1.

The first will correspond to choosing b = −sin(α), d = a and so we have(
cos(α) −sin(α)
sin(α) cos(α)

)
, i.e. f is rotation around the origin in angle α counterclockwise.

In the second case we will get b = sin(α), d = −a and so we have

(
cos(α) sin(α)
sin(α) −cos(α)

)
,

i.e. f is reflection with respect to the line given by the equation −sin(α
2
)e1 +cos(α

2
)e2 = 0

(the line spanned by the vector cos(α
2
)e1 + sin(α

2
)e2).

5.1. Exercise: consider C as a two dimensional vector space over R, and let α ∈ C.
Define a map f : C→ C by f(z) = αz (i.e. f is the map that takes any complex number
and multiplies it by α).

(1) prove that f is linear (you may use the fact that multiplying complex numbers is
a linear operation).

(2) calculate Det(f).
(3) for what α’s is f an orthogonal map? Among these α’s when is f orientation

preserving and when it is not?
(4) for the cases when f is orthogonal - interpret f geometrically in the complex plain

(i.e. explain in a short sentence what does f do geometrically).

6. A remark about Euclidean geometry

In previous weeks we did some exercises about what we called ”reflections”, mainly in
R2. In fact we were cheating a bit - in order to define what is a reflection with respect
to a given line we must have a notion of distance. We always had this notion in mind,
though we never defined it precisely. For example when we said ”reflection with respect
to the line x = y” we had in mind a basis {x, y}, with its inner product, norm, distance
and angle functions defined above. Similar idea holds for what we called ”rotations”.

E-mail address: ary.shaviv@weizmann.ac.il
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