ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 8

Please submit all exercises below in hard copy (either in English or in Hebrew) next Thursday, December $31^{s t}$, in the tutorial. Sections marked as bonus are not mandatory.

1. Condition for invertibility

1.1. Theorem: let $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. Then A is invertible if and only if $\operatorname{Det}(A) \neq 0$.
1.2. Exercise: prove the "only if" part of Theorem 1.1, i.e. prove that if A is invertible then $\operatorname{Det}(A) \neq 0$ (hint: use Theorem 4.9(1) of homework 7).

Remarks: (1) We will not prove the "if" part of Theorem 1.1 in this course, however you may use it. (2) Theorem 1.1 implies that a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if and only if $\operatorname{Det}(f) \neq 0$ (make sure you understand why).

2. Eigenvalues and Eigenvectors

2.1. Definition: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map, and let $\lambda \in \mathbb{R}, v \in \mathbb{R}^{n}$. We say that v is an eigenvector of f with eigenvalue λ if $f(v)=\lambda v$ and $v \neq 0$. We also say that λ is an eigenvalue of f if there exists $v \in \mathbb{R}^{n}, v \neq 0$ such that $f(v)=\lambda v$. The set of all vectors $v \in \mathbb{R}^{n}$ that satisfy $f(v)=\lambda v$ is called the eigenspace of λ.
2.2. Exercise: fix a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Prove that for any $\lambda \in \mathbb{R}$: the eigenspace of λ is a linear subspace of \mathbb{R}^{n}, and calculate the intersection of the eigenspace of λ_{1} and the eigenspace of λ_{2} if $\lambda_{1} \neq \lambda_{2}$.
2.3. Theorem: λ is an eigenvalue of f if and only if $\operatorname{Det}(\lambda I d-f)=0$ (where $I d$ is the identity map from \mathbb{R}^{n} to \mathbb{R}^{n}).

Proof: $(\lambda$ is an eigenvalue of $f) \Longleftrightarrow$ (there exists a non zero $v \in \mathbb{R}^{n}$ such that $f(v)=\lambda v) \Longleftrightarrow\left(\right.$ there exists a non zero $v \in \mathbb{R}^{n}$ such that $\left.\lambda v-f(v)=(\lambda I d-f)(v)=0\right)$ $\Longleftrightarrow(\lambda I d-f$ is not one to one $) \Longleftrightarrow(\lambda I d-f$ is not invertible $) \Longleftrightarrow(\operatorname{Det}(\lambda I d-f) \neq 0)$. The last \Longleftrightarrow sign is due to remark (2) above, the one before it is due to Theorems 5.2 and 5.3 of homework 3 . Make sure you understand all others.

Remark: let A be a matrix corresponding to f with respect to some basis. Now it should be clear to you that λ is an eigenvalue of f if and only if $\operatorname{Det}\left(\lambda I d_{n \times n}-A\right)=0$.
2.4. Definition: let f be a linear map from \mathbb{R}^{n} to \mathbb{R}^{n} and A be an $n \times n$ matrix. The polynomial $P_{f}(x):=\operatorname{Det}(x f-A)\left(\right.$ resp. $\left.P_{A}(x):=\operatorname{Det}\left(x I_{n \times n}-A\right)\right)$ is called the characteristic polynomial of the map f (matrix A).

Remark: like in the case of determinant there is a Theorem saying that if A and B are similar matrices (i.e. there exists a linear map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that both A and B represent f in some bases) then $P_{A}(x)=P_{B}(x)$. This Theorem does not follow from the one about determinants, but it is also true. Similarly to the determinant case it is also true that $P_{f}(x)=P_{A}(x)$, when A is a matrix corresponding to f in some basis.
2.5. Claim: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map. Then f has no more than n eigenvalues.

Proof: $\lambda \in \mathbb{R}$ is an eigenvalue of $f \Longleftrightarrow \lambda \in \mathbb{R}$ is a root of $P_{f}(x)$ (i.e. $P_{f}(\lambda)=0$ and λ is real). As $P_{f}(x)$ is a polynomial of degree n, by the fundamental theorem of algebra it has no more than n roots.

So we now can find find eigenvalues of any linear map. We first write the corresponding matrix to f in some basis (let us call this matrix A) and then we find the roots of its characteristic polynomial. Finding eigenvectors is also not difficult: if λ is an eigenvalue then the corresponding eigenspace will be all vectors $v \in \mathbb{R}^{n}$ satisfying $A v=\lambda v$.

3. Diagonalization

Why do we like eigenvalues and eigenvectors? If $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of f contained only of eigenvectors (i.e. for any $0 \leq i \leq n: f\left(v_{i}\right)=\lambda_{i} v_{i}$) then the corresponding matrix of f with respect to this basis is just

$$
\left(\begin{array}{ccccccc}
\lambda_{1} & 0 & 0 & . & . & . & 0 \\
0 & \lambda_{2} & 0 & . & . & . & 0 \\
0 & 0 & \lambda_{3} & . & . & . & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & \lambda_{n-1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda_{n}
\end{array}\right)
$$

i.e. a matrix whose only non zero entries sit in its main diagonal and these are exactly the eigenvalues. Finding such a basis s called diagonalizing f. A linear map that has such a basis is called diagonalizable.
3.1. Corollary: if f is diagonalizable then $\operatorname{Det}(f)$ is the product of its eigenvalues.
3.2. Example: let us diagonalize f given in some basis $\{x, y\}$ of \mathbb{R}^{2} by $f(x)=x-$ $y, f(y)=y-x$. The corresponding matrix A is $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. Then $P_{f}(x)=P_{A}(x)=$ $\operatorname{Det}\left(x I d_{n \times n}-A\right)=\operatorname{Det}\left(\begin{array}{cc}x-1 & 1 \\ 1 & x-1\end{array}\right)=(x-1)^{2}-1=x(x-2)$ and we are interested in its roots so $\lambda_{1}=0, \lambda_{2}=2$. Now let us try to find a basis consisting of eigenvectors only: $A v_{1}=0 v_{1}$ so we can solve this and find that $x+y$ is an eigenvector of the eigenvalue 0 . Similarly we can take $x-y$ that is an eigenvector of the eigenvalue 2 . We conclude that with respect to the basis $\{x+y, x-y\} f$ corresponds to the matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right)$.
3.3. Exercise: let $\{x, y\}$ be some basis of \mathbb{R}^{2}. Define a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x)=x+3 y, f(y)=5 x+7 y$. Diagonalize f (in fact you know the answer from exercise 3.6 of homework 6 , please show the explicit calculation).
3.4. Exercise: Diagonalize the matrix $\left(\begin{array}{ccc}\frac{3}{2} & -\frac{1}{2} & -1 \\ -\frac{1}{2} & \frac{3}{2} & -1 \\ 0 & 0 & 3\end{array}\right)$ (i.e. this matrix corresponds to some linear map f with respect to some basis - diagonalize f).

Warning! Not all linear maps are diagonalizable. The following exercise shows it:
3.5. Exercise: let $\{x, y\}$ be some basis of \mathbb{R}^{2}. Define a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $f(x)=x, f(y)=x+y$. Show that f has only one eigenvalue (and find it) and show that the eigenspace corresponds to this eigenvalue is one dimensional. Conclude that f is not diagonalizable.

In fact, some linear maps have no eigenvectors at all. The following exercise shows it:
3.6. Exercise: let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be rotation around the origin in some angle $\alpha \not \equiv$ $0(\bmod 2 \pi)$ (i.e. f is not the identity function). Prove that f has no (real) eigenvalues, i.e. that there is no $\lambda \in \mathbb{R}$ and a non-zero $v \in \mathbb{R}^{n}$ such that $f(v)=\lambda v$.

4. Fixed points

4.1. Definition: an eigenvector corresponding to the eigenvalue 1 is called a fixed point of f (these are exactly all the vectors that f "does nothing to").

Fixed points of a linear map will be of great importance to us.
4.2. Claim: fix some basis of \mathbb{R}^{n} (and now you have the notion of length). If λ is an eigenvalue of f then f has an eigenvector v corresponding to λ such that the length of v is 1 .

Proof: let $v \in \mathbb{R}^{n}$ be non-zero vector satisfying $f(v)=\lambda v$ (such v exists as λ is an eigenvalue of f). Define $v^{\prime}:=\frac{v}{|v|}$, then $f\left(v^{\prime}\right)=f\left(\frac{v}{|v|}\right)=\frac{\lambda v}{|v|}=\lambda \frac{v}{|v|}=\lambda v^{\prime}$, and $\left|v^{\prime}\right|=\left|\frac{v}{|v|}\right|=\sqrt{\left\langle\frac{v}{|v|}, \frac{v}{|v|}\right\rangle}=\sqrt{\frac{\langle v, v\rangle}{|v|^{2}}}=\sqrt{\frac{|v|^{2}}{|v|^{2}}}=1$. Thus we showed that v^{\prime} satisfies the conditions of the claim.
4.3. Corollary: fix some basis of \mathbb{R}^{n} (and now you have the notion of length). If f has a fixed point (i.e. 1 is an eigenvalue of f) then f has a fixed point of length 1 .
4.4. Exercise: $\left\{e_{1}, e_{2}, e_{3}\right\}$ be some basis of \mathbb{R}^{3}, and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given in this basis by the matrix $\left(\begin{array}{ccc}0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right)$. Find a fixed point of length 1 of f (i.e. find a vector $v \in \mathbb{R}^{3}$ such that $f(v)=v$ and $|v|=1$).

E-mail address: ary.shaviv@weizmann.ac.il

