ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 8

Please submit all exercises below in hard copy (either in English or in Hebrew) next Thursday, December 31^{st} , in the tutorial. Sections marked as bonus are not mandatory.

1. CONDITION FOR INVERTIBILITY

1.1. Theorem: let $A \in Mat_{n \times n}(\mathbb{R})$. Then A is invertible if and only if $Det(A) \neq 0$.

1.2. Exercise: prove the "only if" part of Theorem 1.1, i.e. prove that if A is invertible then $Det(A) \neq 0$ (hint: use Theorem 4.9(1) of homework 7).

Remarks: (1) We will not prove the "if" part of Theorem 1.1 in this course, however you may use it. (2) Theorem 1.1 implies that a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ is invertible if and only if $Det(f) \neq 0$ (make sure you understand why).

2. Eigenvalues and Eigenvectors

2.1. Definition: let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map, and let $\lambda \in \mathbb{R}$, $v \in \mathbb{R}^n$. We say that v is an eigenvector of f with eigenvalue λ if $f(v) = \lambda v$ and $v \neq 0$. We also say that λ is an eigenvalue of f if there exists $v \in \mathbb{R}^n$, $v \neq 0$ such that $f(v) = \lambda v$. The set of all vectors $v \in \mathbb{R}^n$ that satisfy $f(v) = \lambda v$ is called the eigenspace of λ .

2.2. Exercise: fix a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$. Prove that for any $\lambda \in \mathbb{R}$: the eigenspace of λ is a linear subspace of \mathbb{R}^n , and calculate the intersection of the eigenspace of λ_1 and the eigenspace of λ_2 if $\lambda_1 \neq \lambda_2$.

2.3. Theorem: λ is an eigenvalue of f if and only if $Det(\lambda Id - f) = 0$ (where Id is the identity map from \mathbb{R}^n to \mathbb{R}^n).

Proof: $(\lambda \text{ is an eigenvalue of } f) \iff (\text{there exists a non zero } v \in \mathbb{R}^n \text{ such that } f(v) = \lambda v) \iff (\text{there exists a non zero } v \in \mathbb{R}^n \text{ such that } \lambda v - f(v) = (\lambda Id - f)(v) = 0) \iff (\lambda Id - f \text{ is not one to one}) \iff (\lambda Id - f \text{ is not invertible}) \iff (Det(\lambda Id - f) \neq 0).$ The last \iff sign is due to remark (2) above, the one before it is due to Theorems 5.2 and 5.3 of homework 3. Make sure you understand all others. \Box

Remark: let A be a matrix corresponding to f with respect to some basis. Now it should be clear to you that λ is an eigenvalue of f if and only if $Det(\lambda Id_{n \times n} - A) = 0$.

2.4. Definition: let f be a linear map from \mathbb{R}^n to \mathbb{R}^n and A be an $n \times n$ matrix. The polynomial $P_f(x) := Det(xf - A)$ (resp. $P_A(x) := Det(xI_{n \times n} - A)$) is called the characteristic polynomial of the map f (matrix A).

Remark: like in the case of determinant there is a Theorem saying that if A and B are similar matrices (i.e. there exists a linear map $f : \mathbb{R}^n \to \mathbb{R}^n$ such that both A and Brepresent f in some bases) then $P_A(x) = P_B(x)$. This Theorem does not follow from the one about determinants, but it is also true. Similarly to the determinant case it is also true that $P_f(x) = P_A(x)$, when A is a matrix corresponding to f in some basis.

Date: December 24^{th} 2015.

2.5. Claim: let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then f has no more than n eigenvalues.

Proof: $\lambda \in \mathbb{R}$ is an eigenvalue of $f \iff \lambda \in \mathbb{R}$ is a root of $P_f(x)$ (i.e. $P_f(\lambda) = 0$ and λ is real). As $P_f(x)$ is a polynomial of degree n, by the fundamental theorem of algebra it has no more than n roots.

So we now can find find eigenvalues of any linear map. We first write the corresponding matrix to f in some basis (let us call this matrix A) and then we find the roots of its characteristic polynomial. Finding eigenvectors is also not difficult: if λ is an eigenvalue then the corresponding eigenspace will be all vectors $v \in \mathbb{R}^n$ satisfying $Av = \lambda v$.

3. DIAGONALIZATION

Why do we like eigenvalues and eigenvectors? If $\{v_1, v_2, ..., v_n\}$ is a basis of f contained only of eigenvectors (i.e. for any $0 \le i \le n$: $f(v_i) = \lambda_i v_i$) then the corresponding matrix of f with respect to this basis is just

λ_1	0	0				0 \
0	λ_2	0				0
0	0	λ_3	•			0
		•	•			
0	0	0	0	0	λ_{n-1}	0
$\setminus 0$	0	0	0	0		λ_n

i.e. a matrix whose only non zero entries sit in its main diagonal and these are exactly the eigenvalues. Finding such a basis s called diagonalizing f. A linear map that has such a basis is called diagonalizable.

3.1. Corollary: if f is diagonalizable then Det(f) is the product of its eigenvalues.

3.2. Example: let us diagonalize f given in some basis $\{x, y\}$ of \mathbb{R}^2 by f(x) = x - y, f(y) = y - x. The corresponding matrix A is $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Then $P_f(x) = P_A(x) = Det(xId_{n\times n} - A) = Det\begin{pmatrix} x-1 & 1 \\ 1 & x-1 \end{pmatrix} = (x-1)^2 - 1 = x(x-2)$ and we are interested in its roots so $\lambda_1 = 0$, $\lambda_2 = 2$. Now let us try to find a basis consisting of eigenvectors only: $Av_1 = 0v_1$ so we can solve this and find that x + y is an eigenvector of the eigenvalue 0. Similarly we can take x - y that is an eigenvector of the eigenvalue 2. We conclude that with respect to the basis $\{x + y, x - y\}$ f corresponds to the matrix $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$.

3.3. Exercise: let $\{x, y\}$ be some basis of \mathbb{R}^2 . Define a linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$ by f(x) = x + 3y, f(y) = 5x + 7y. Diagonalize f (in fact you know the answer from exercise 3.6 of homework 6, please show the explicit calculation).

3.4. Exercise: Diagonalize the matrix $\begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & -1 \\ -\frac{1}{2} & \frac{3}{2} & -1 \\ 0 & 0 & 3 \end{pmatrix}$ (i.e. this matrix corresponds to some linear map f with respect to some basis - diagonalize f).

Warning! Not all linear maps are diagonalizable. The following exercise shows it:

3.5. Exercise: let $\{x, y\}$ be some basis of \mathbb{R}^2 . Define a linear map $f : \mathbb{R}^2 \to \mathbb{R}^2$ by f(x) = x, f(y) = x + y. Show that f has only one eigenvalue (and find it) and show that the eigenspace corresponds to this eigenvalue is one dimensional. Conclude that f is not diagonalizable.

In fact, some linear maps have no eigenvectors at all. The following exercise shows it:

3.6. Exercise: let $f : \mathbb{R}^n \to \mathbb{R}^n$ be rotation around the origin in some angle $\alpha \not\equiv 0 \pmod{2\pi}$ (i.e. f is not the identity function). Prove that f has no (real) eigenvalues, i.e. that there is no $\lambda \in \mathbb{R}$ and a non-zero $v \in \mathbb{R}^n$ such that $f(v) = \lambda v$.

4. Fixed points

4.1. Definition: an eigenvector corresponding to the eigenvalue 1 is called a fixed point of f (these are exactly all the vectors that f "does nothing to").

Fixed points of a linear map will be of great importance to us.

4.2. Claim: fix some basis of \mathbb{R}^n (and now you have the notion of length). If λ is an eigenvalue of f then f has an eigenvector v corresponding to λ such that the length of v is 1.

Proof: let $v \in \mathbb{R}^n$ be non-zero vector satisfying $f(v) = \lambda v$ (such v exists as λ is an eigenvalue of f). Define $v' := \frac{v}{|v|}$, then $f(v') = f(\frac{v}{|v|}) = \frac{\lambda v}{|v|} = \lambda \frac{v}{|v|} = \lambda v'$, and $|v'| = |\frac{v}{|v|}| = \sqrt{<\frac{v}{|v|}, \frac{v}{|v|}} = \sqrt{\frac{\langle v, v \rangle}{|v|^2}} = \sqrt{\frac{|v|^2}{|v|^2}} = 1$. Thus we showed that v' satisfies the conditions of the claim.

4.3. Corollary: fix some basis of \mathbb{R}^n (and now you have the notion of length). If f has a fixed point (i.e. 1 is an eigenvalue of f) then f has a fixed point of length 1.

4.4. Exercise: $\{e_1, e_2, e_3\}$ be some basis of \mathbb{R}^3 , and let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be given in this basis by the matrix $\begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$. Find a fixed point of length 1 of f (i.e. find a vector $v \in \mathbb{R}^3$ such that f(v) = v and |v| = 1).

E-mail address: ary.shaviv@weizmann.ac.il