
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 8

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, December 31st, in the tutorial. Sections marked as bonus are not mandatory.

1. Condition for invertibility

1.1. Theorem: let A ∈Matn×n(R). Then A is invertible if and only if Det(A) 6= 0.

1.2. Exercise: prove the ”only if” part of Theorem 1.1, i.e. prove that if A is invertible
then Det(A) 6= 0 (hint: use Theorem 4.9(1) of homework 7).

Remarks: (1) We will not prove the ”if” part of Theorem 1.1 in this course, however
you may use it. (2) Theorem 1.1 implies that a linear map f : Rn → Rn is invertible if
and only if Det(f) 6= 0 (make sure you understand why).

2. Eigenvalues and Eigenvectors

2.1. Definition: let f : Rn → Rn be a linear map, and let λ ∈ R, v ∈ Rn. We say that v
is an eigenvector of f with eigenvalue λ if f(v) = λv and v 6= 0. We also say that λ is an
eigenvalue of f if there exists v ∈ Rn, v 6= 0 such that f(v) = λv. The set of all vectors
v ∈ Rn that satisfy f(v) = λv is called the eigenspace of λ.

2.2. Exercise: fix a linear map f : Rn → Rn. Prove that for any λ ∈ R: the eigenspace
of λ is a linear subspace of Rn, and calculate the intersection of the eigenspace of λ1 and
the eigenspace of λ2 if λ1 6= λ2.

2.3. Theorem: λ is an eigenvalue of f if and only if Det(λId− f) = 0 (where Id is the
identity map from Rn to Rn).

Proof: (λ is an eigenvalue of f) ⇐⇒ (there exists a non zero v ∈ Rn such that
f(v) = λv) ⇐⇒ (there exists a non zero v ∈ Rn such that λv−f(v) = (λId−f)(v) = 0)
⇐⇒ (λId−f is not one to one) ⇐⇒ (λId−f is not invertible) ⇐⇒ (Det(λId−f) 6= 0).
The last ⇐⇒ sign is due to remark (2) above, the one before it is due to Theorems 5.2
and 5.3 of homework 3. Make sure you understand all others. �

Remark: let A be a matrix corresponding to f with respect to some basis. Now it
should be clear to you that λ is an eigenvalue of f if and only if Det(λIdn×n − A) = 0.

2.4. Definition: let f be a linear map from Rn to Rn and A be an n×n matrix. The poly-
nomial Pf (x) := Det(xf−A) (resp. PA(x) := Det(xIn×n−A)) is called the characteristic
polynomial of the map f (matrix A).

Remark: like in the case of determinant there is a Theorem saying that if A and B are
similar matrices (i.e. there exists a linear map f : Rn → Rn such that both A and B
represent f in some bases) then PA(x) = PB(x). This Theorem does not follow from the
one about determinants, but it is also true. Similarly to the determinant case it is also
true that Pf (x) = PA(x), when A is a matrix corresponding to f in some basis.
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2.5. Claim: let f : Rn → Rn be a linear map. Then f has no more than n eigenvalues.

Proof: λ ∈ R is an eigenvalue of f ⇐⇒ λ ∈ R is a root of Pf (x) (i.e. Pf (λ) = 0 and
λ is real). As Pf (x) is a polynomial of degree n, by the fundamental theorem of algebra
it has no more than n roots. �

So we now can find find eigenvalues of any linear map. We first write the corresponding
matrix to f in some basis (let us call this matrix A) and then we find the roots of its
characteristic polynomial. Finding eigenvectors is also not difficult: if λ is an eigenvalue
then the corresponding eigenspace will be all vectors v ∈ Rn satisfying Av = λv.

3. Diagonalization

Why do we like eigenvalues and eigenvectors? If {v1, v2, ..., vn} is a basis of f contained
only of eigenvectors (i.e. for any 0 ≤ i ≤ n: f(vi) = λivi) then the corresponding matrix
of f with respect to this basis is just

λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
. . . . . . .
. . . . . . .
0 0 0 0 0 λn−1 0
0 0 0 0 0 0 λn


i.e. a matrix whose only non zero entries sit in its main diagonal and these are exactly
the eigenvalues. Finding such a basis s called diagonalizing f . A linear map that has such
a basis is called diagonalizable.

3.1. Corollary: if f is diagonalizable then Det(f) is the product of its eigenvalues.

3.2. Example: let us diagonalize f given in some basis {x, y} of R2 by f(x) = x −

y, f(y) = y − x. The corresponding matrix A is

(
1 −1
−1 1

)
. Then Pf (x) = PA(x) =

Det(xIdn×n −A) = Det

(
x− 1 1

1 x− 1

)
= (x− 1)2 − 1 = x(x− 2) and we are interested

in its roots so λ1 = 0, λ2 = 2. Now let us try to find a basis consisting of eigenvectors
only: Av1 = 0v1 so we can solve this and find that x+y is an eigenvector of the eigenvalue
0. Similarly we can take x − y that is an eigenvector of the eigenvalue 2. We conclude

that with respect to the basis {x+ y, x− y} f corresponds to the matrix

(
0 0
0 2

)
.

3.3. Exercise: let {x, y} be some basis of R2. Define a linear map f : R2 → R2 by
f(x) = x+ 3y, f(y) = 5x+ 7y. Diagonalize f (in fact you know the answer from exercise
3.6 of homework 6, please show the explicit calculation).

3.4. Exercise: Diagonalize the matrix

 3
2
−1

2
−1

−1
2

3
2
−1

0 0 3

 (i.e. this matrix corresponds to

some linear map f with respect to some basis - diagonalize f).

Warning! Not all linear maps are diagonalizable. The following exercise shows it:
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3.5. Exercise: let {x, y} be some basis of R2. Define a linear map f : R2 → R2 by
f(x) = x, f(y) = x+ y. Show that f has only one eigenvalue (and find it) and show that
the eigenspace corresponds to this eigenvalue is one dimensional. Conclude that f is not
diagonalizable.

In fact, some linear maps have no eigenvectors at all. The following exercise shows it:

3.6. Exercise: let f : Rn → Rn be rotation around the origin in some angle α 6≡
0 (mod 2π) (i.e. f is not the identity function). Prove that f has no (real) eigenval-
ues, i.e. that there is no λ ∈ R and a non-zero v ∈ Rn such that f(v) = λv.

4. Fixed points

4.1. Definition: an eigenvector corresponding to the eigenvalue 1 is called a fixed point
of f (these are exactly all the vectors that f ”does nothing to”).

Fixed points of a linear map will be of great importance to us.

4.2. Claim: fix some basis of Rn (and now you have the notion of length). If λ is an
eigenvalue of f then f has an eigenvector v corresponding to λ such that the length of v
is 1.

Proof: let v ∈ Rn be non-zero vector satisfying f(v) = λv (such v exists as λ is
an eigenvalue of f). Define v′ := v

|v| , then f(v′) = f( v
|v|) = λv

|v| = λ v
|v| = λv′, and

|v′| = | v|v| | =
√
< v
|v| ,

v
|v| > =

√
<v,v>
|v|2 =

√
|v|2
|v|2 = 1. Thus we showed that v′ satisfies the

conditions of the claim. �

4.3. Corollary: fix some basis of Rn (and now you have the notion of length). If f has
a fixed point (i.e. 1 is an eigenvalue of f) then f has a fixed point of length 1.

4.4. Exercise: {e1, e2, e3} be some basis of R3, and let f : R3 → R3 be given in this basis

by the matrix

0 1
2

1
2

1
2

0 1
2

1
2

1
2

0

. Find a fixed point of length 1 of f (i.e. find a vector v ∈ R3

such that f(v) = v and |v| = 1).

E-mail address: ary.shaviv@weizmann.ac.il
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