
ENGINEERING MATHEMATICS - TUTORIAL AND HOMEWORK 9

Please submit all exercises below in hard copy (either in English or in Hebrew) next
Thursday, January 7th, in the tutorial. Sections marked as bonus are not mandatory.

1. Norms on Rn

For this chapter we fix a basis {e1, e2, ..., en} of Rn. Thus for any vector v ∈ Rn we
have coordinates v1, v2, ..., vn.

We saw that using the inner product we can define the norm of a vector v ∈ Rn by
|v| =
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2 . Let us denote this norm function by | · |2, i.e. we add a

lower index 2, and from now on we write |v|2 =
√
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2 . This norm is often

called the Euclidean norm or L2 norm, and this is how we are used to ”measure” length
in Rn. However, there are many ways to do so, i.e. many functions from Rn to R that
will satisfy the ”natural” conditions we should demand. Let us define these conditions:

1.1. Definition: a norm on Rn is a function N : Rn → R satisfying the following condi-
tions for any λ ∈ R and any v, w ∈ Rn:

(1) N(λv) = |λ|N(v) (homogeneity).
(2) N(v + w) ≤ N(v) +N(w) (triangle inequality).
(3) if N(v) = 0 then v = 0.

1.2. Claim: if N is a norm then for any v ∈ Rn: N(v) ≥ 0.

Proof: by condition (1) we have N(0) = 0 and for any v ∈ Rn: N(v) = N(−v). By
condition (2) we have 0 = N(0) = N(v+(−v)) ≤ N(v)+N(−v) = N(v)+N(v) = 2N(v),
thus N(v) ≥ 0. �

1.3. Examples:

(1) | · |2 is a norm.
(2) let us define the L1 norm by |v|1 = Σn

i=1|vi|. This is sometimes called ”the Man-
hattan taxi drivers norm” (think why).

(3) let 1 ≤ p ∈ R and define the Lp norm by |v|p = (Σn
i=1|vi|p)

1
p . Note that for p = 2

we get example (1) and when p = 1 we get example (2).
(4) let us define the L∞ norm by |v|∞ = max{|vi|}ni=1. This is sometimes called the

maximum norm.

1.4. Definition: let N be a norm on Rn. The set BN := {v ∈ Rn|N(v) < 1} (respectively
{v ∈ Rn|N(v) ≤ 1}) is called the open (resp. closed) unit ball corresponding to N .

1.5. Definition: We call a set A in Rn convex if for any two vectors v1, v2 ∈ A and any
real number 0 ≤ λ ≤ 1: λv1 + (1− λ)v2 ∈ A..

1.6. Exercise: let N be a norm on Rn. Prove that BN is convex.
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1.7. Exercise: take your favorite basis {x, y} of R2 and draw the ”unit spheres” of the
norms L2, L1 and L∞, i.e. plot the set of all points v ∈ R2 satisfying |v|2 = 1, the set of
all points v ∈ R2 satisfying |v|1 = 1 and the set of all points v ∈ R2 satisfying |v|∞ = 1.
Explain your answers.

1.8. Exercise: let f : Rn → Rn be a linear map such that 1 is an eigenvalue of f , and let
N : Rn → R be a norm on Rn. Prove that f has a fixed point v ∈ Rn satisfying N(v) = 1
(hint: this is very similar to claim 4.2 of homework number 8).

Remark: the subject of norms is much richer than what we discussed, however the
examples above will be sufficient for our needs. We will especially use the L1 norm.

2. Basic probability (reminder)

2.1. Exercise: you roll a standard fair dice with 6 faces (such that the probability of each
number to occur is equal) and choose a vacation destination using the following process:
first roll the dice and choose the country to visit by:

1− England, 2− France, 3− Italy, 4− Thailnad, 5− Canada, 6− Finland.

Afterwards roll the dice again, denote the outcome of this roll by N , and choose the city
to visit by the following cases:

(1) if you are in England visit London ifN ≡ 0(mod 3) and visit Manchester otherwise.
(2) if you are in France visit Chamonix if N ≡ 0(mod 2) and visit Paris otherwise.
(3) if you are in Italy go to Rome.
(4) if you are in Thailand go to Chiang-Mai.
(5) if you are in Canada go to Quebec city.
(6) if you are in Finland roll the dice again (forget N) and denote the outcome of this

new roll by M . If M > 1 go to Helsinki, otherwise go to Rovaniemi.

What is the probability you will find yourself having a vacation in a European capital?

2.2. Example (”the birthday paradox”): Assume N people are in a room, each have a
birthday date uniformly distributed in the year (i.e. the probability of a person having a
birthday in a given day is independent of the day, thus it is just 1

365
- we forget February

29th for this exercise), and the birthday dates are all independent. What is the probability
that at least two people in the room share their birthday date?

Solution: instead of calculating the probability that at least two people in the room
share their birthday date (denote this number by X), we will calculate the probability
that no two people in the room share their birthday date (denote this number by Y ). It
is clear that X = 1− Y .

Let us line all N people in a row. The first person can have any birthday date. The
second will now have 364 options (in order not to have the same date as the first), so with
probability 364

365
the event ”no two people in the room share their birthday date” may still

happen. The third will now have 363 options (in order not to have the same date as the
first or the second), so with probability 363

365
the event ”no two people in the room share

their birthday date” may still happen. The fourth will now have 362 options (in order
not to have the same date as the first or the second or the third), so with probability 362

365
the event ”no two people in the room share their birthday date” may still happen. So
on we proceed untill the N th person will have 365-(N − 1) options, and eventually with
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probability 365−(N+1)
365

the event ”no two people in the room share their birthday date” may
still happen. As we need all events above to happen, multiplying the above probabilities
we get exactly Y :

Y =
365

365
· 364

365
· 363

365
· · · 365− (N − 1)

365
= ΠN−1

i=1

365− i
365

.

Eventually we get that the probability that at least two people in the room share their
birthday date is

X = 1− 365

365
· 364

365
· 363

365
· · · 365− (N − 1)

365
= 1− ΠN−1

i=1

365− i
365

.

If we take N = 23 we get that X is approximately 0.507, i.e. there is a probability of
more than 50% to find two people in the room that share their birthday date. If we take
N = 60 we get a probability of more than 99%. These results are sometimes called ”the
birthday paradox”.

Remark: This solution is not a rigourous mathematical proof, however it is not difficult
to construct one using it (the calculations are all correct but should be explained more
carefully - if you read the English Wikipedia article about ”the birthday paradox” beware
of a small mistake in these explanations).

2.3. Exercise: you construct a six digit number in the following way: you roll a standard
fair dice with 6 faces six times. The first digit is result of the first roll, the second is the
second result and so on.

(1) What is the probability to get the number 123456?
(2) What is the probability to get a number that all of its digits are pairwise different

(i.e. a number that each digit 1,2,3,4,5,6 appears in it exactly once)?
(3) What is the probability to get an even number?
(4) What is the probability to get a number greater than 311111?

2.4. Recall that for a random variable X that takes the value Xi with probability Pi we
define its expected value by E(X) := Σi(pi · xi) (if this number is finite). If X only takes
finitely many x′is with probabilities different than zero it is always defined.

2.5. Exercise: what is the expected value of a standard fair dice with 6 faces.

2.6. Exercise: you roll two standard fair dices with 6 faces each. If both numbers that
came up are the same we say you got a double. Now you repeat this process 3 times.
What is the probability to get 3 doubles? Playing Monopoly this will send you to jail.

2.7. Exercise: we take a coin that falls on ”heads” with probability p and on ”tails” with
probability 1− p.

(1) We play the following game: you flip the coin and win w shekels if it fell on
”heads” and loss l shekels if it fell on ”tails”. What is the expected value of the
game (thinking of the game as a random variable taking w with probability p and
taking −l with probability 1− p)? This can be interpreted as the average number
of shekels you win each time you play the game.
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(2) We play the following game: you flip the coin over and over, up to four times,
until you get ”heads”. The first time you get ”heads” the game is over. If you got
”heads” in the first chance you get w1 shekels, if you got ”heads” in the second
chance you get w2 shekels, if you got ”heads” in the third chance you get w3

shekels, and if you got ”heads” in the fourth chance you get w4 shekels. If all four
times you got ”tails” you win nothing. What is the expected value of the game?
There is no need to simplify the expression you got.

(3) Take p = 1
2
. We play the following game: you flip the coin over and over until you

get ”heads”. The first time you get ”heads” the game is over. If the first time was
after n tries you get 2n shekels. What is the expected value of the game?

2.8. Intuition test: there are 13 students in the Rothschild-Weizmann program. In order
to choose a student who will stay after class to clean the classroom we do the following
process: we take 13 paper notes and write ”you lost” on one of them only. We fold the
notes and put them in a bowl. Each student takes a note out of the bowl and keeps it. The
one who got the ”you lost” note stays after class. In order to have the best probability of
not staying after class - would you prefer to be the first one who takes a note? Or maybe
the last? After giving some thought to this you can find the answer in this (Hebrew!)
article. This is a nice implication of probability theory in everyday life.

E-mail address: ary.shaviv@weizmann.ac.il
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