MANIFOLDS: FALL 2014 EXERCISE 10

DMITRY NOVIKOV

Problem 1. Choose 3 from 2.4.1, 2.4.2, 2.4.18, 2.4.13, 2.4.14, 2.4.15.

Problem 2. As an application of 2.4.15, prove Borsuk-Ulam theorem in dimension one: assume that $f : \mathbb{S}^1 \to \mathbb{S}^1$ is odd, i.e. $f(x + \pi) = f(x) + \pi, x \in \mathbb{R}/2\pi\mathbb{Z}$ (or, equivalently, f(-x) = -f(x) if we consider \mathbb{S}^1 as a subset of \mathbb{R}^2). Then $\deg_2 f = 1$. Here is a plan: assume $f(0) \neq 0$. Let $M = \mathbb{S}^1 \times \mathbb{S}^1$.

- (1) Construct $Z \subset M$ a smooth submanifold coinciding with $\mathbb{S}^1 \times \{0\} \cup \{0\} \times \mathbb{S}^1$ outside a small neighborhood of (0,0) (replace a cross with two "hyperbolas").
- (2) Prove that $\Delta = \{(x, x) | x \in \mathbb{S}^1\} \subset M$ is cobordant to Z.
- (3) Let Γ be a graph of f. Show that $I_2(\Gamma, \Delta) = 0$.
- (4) Conclude that $I_2(\Gamma, Z) = 0$.
- (5) But $I_2(\Gamma, Z) = I_2(\Gamma, \mathbb{S}^1 \times \{0\}) + I_2(\Gamma, \{0\} \times \mathbb{S}^1),$
- (6) $I_2(\Gamma, \{0\} \times \mathbb{S}^1) = 1,$
- (7) and $I_2(\Gamma, \mathbb{S}^1 \times \{0\}) = \deg_2 f$.

Remark: this proof generalizes to higher dimensions.

Date: January 12, 2015.