MANIFOLDS: FALL 2014 EXERCISE 11

DMITRY NOVIKOV

ABSTRACT. 2.5-2.6 of Guillemin-Pollack.

Problem 1. Prove that the eight-figure $\gamma_0(t) = (\cos t, \sin 2t)$ is not homotopic to a circle $\gamma_1 = (\cos t, \sin t)$ in the class of immersed curves (i.e. such that each γ_t is an immersion of \mathbb{S}^1 for $t \in [0, 1]$). Hint: follow $W_2(\gamma'_t, 0)$.

Problem 2. Construct a continuous mapping $f: T^2 \to \mathbb{R}^2$ such that f(x) is never equal to f(-x).

Application of the Borsuk-Ulam theorem (see the link to the excellent book of Matousek) to combinatorics are numerous.

Problem 3. Lyusternik-Shnirelman theorem

- (1) Whenever \mathbb{S}^n is covered by n+1 sets $A_1, A_2, ..., A_{n+1}$, each A_i closed, there is an i such that $A_i \cap (-A_i) \neq \emptyset$ (Hint: dist $(\cdot, A_i), i = 1, ..., n$ are continuous functions on \mathbb{S}^n).
- (2) Give an example showing that n + 1 cannot be replaced by n + 2.

Problem 4. Ham sandwich theorem: Let $\mu_i, i = 1, ..., d$ be finite absolutely continuous Borel measures on \mathbb{R}^d . Then there exists an affine hyperplane $h \subset \mathbb{R}^d$ such that $\mu_i(h_+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$ for i = 1, 2, ..., d, where h_+ denotes one of the half-spaces bounded by h.

Problem 5. Prove that any measurable set in the plane can be dissected into four equal parts by two lines.

Remark: this cannot be generalized to \mathbb{R}^5 : any 5 hyperplanes cut the so-called moment curve $(t, t^2, ..., t^5)$ into at most 25 pieces, which is less than $2^5 = 32$ (why this is a counterexample?).

By taking a limit, one obtain a Ham sandwich theorem for a *d*-tuple of finite sets of points: if $A_i, i = 1, ..., d$ are finite subsets of \mathbb{R}^d such that no d + 2 points of $\cup A_i$ are collinear then there exist a hyperplane bisecting all of them simultaneously. As an application, there is a proof of Necklace theorem on p.54-55 of http://www.maths.ed.ac.uk/ aar/papers/matousek1.pdf

Date: January 15, 2015.