MANIFOLDS: FALL 2014 EXERCISE 12

DMITRY NOVIKOV

ABSTRACT. Guillemin-Pollack Chapter 3.1-3.3

Problem 1. 3.2.9, 3.2.14, 3.3.8, 3.3.10

Problem 2. (1) Any \mathbb{C}^n , considered as the \mathbb{R}^{2n} , comes with a canonical orientation: choose a \mathbb{C} -basis $\{v_1,...,v_n\}$, and take $\{v_1,iv_1,...,v_n,iv_n\}$ as a positively oriented basis of \mathbb{R}^{2n} . Show that the resulting orientation of \mathbb{R}^{2n} doesn't depend on the choice of $\{v_1,...,v_n\}$.

(2) Let $P: \mathbb{C} \to \mathbb{C}$ be a polynomial of degree m. It defines a mapping $\tilde{P}: \mathbb{C}P^1 \to \mathbb{C}P^1$ by $\tilde{P}(z) = P(z)$ for $z \neq \infty$ and $\tilde{P}(\infty) = \infty$. Show that the degree of \tilde{P} as a mapping of \mathbb{S}^2 to itself is equal to m.

Date: January 22, 2015.