MANIFOLDS: FALL 2014 EXERCISE 3

DMITRY NOVIKOV

ABSTRACT. Chapters 1.3-1.4 by Guillemin-Pollack, partition of unity, embedding of compact manifolds to $\mathbb{R}^N.$

Problem 1. 1.4.2, 1.4.7

Problem 2. Let $P_n = \{p(x) \in \mathbb{R}[x], \deg p = n\}$ be the affine space of polynomials of degree n in one variable, and consider the mapping $\phi : P_2 \times P_2 \to P_4$, $\phi(p,q) = pq$. Describe those pairs (p,q) for which $d\phi_{(p,q)}$ is not surjective. What are the possible number of preimages of $r \in P_4$?

Problem 3. Let X be a compact manifold, and let $\{U_i\}_{i=1}^n$ be an open cover of X. Prove that there exists a partition of unity θ_i such that supp $\theta_i \subset U_i$.

Problem 4. Let $Z \subset X$ be a closed submanifold of a compact manifold X of codimension 1. Construct a smooth function on X vanishing exactly on Z.

Problem 5. Let $\phi: \mathbb{S}^1 \to \mathbb{R}^3$ be the immersion $\phi(x) = (\cos x, \sin 2x, \cos 3x)$. For a given $\epsilon > 0$ find a small perturbation $\tilde{\phi}$ of ϕ which is an embedding and $\|\tilde{\phi}(x) - \phi(x)\| < \epsilon$ for all $x \in \mathbb{S}^1$.

Date: November 18, 2014.