MANIFOLDS: FALL 2014 EXERCISE 4

DMITRY NOVIKOV

ABSTRACT. Chapters 1.4 by Guillemin-Pollack, Sard theorem

Problem 1. 1.4.6, 1.4.8, 1.4.11, 1.4.13

Problem 2. Let $X \subset \mathbb{R}^N$ be a submanifold of \mathbb{R}^N , dim X = n.

- (1) Assume that for some vector $\vec{v} \in \mathbb{R}^n \ \forall x \in X : \vec{v} \notin T_x X$, and let $\pi : \mathbb{R}^N \to \vec{v}^{\perp}$ be the projection along \vec{v} to the hyperplane orthogonal to \vec{v} . Show that the restriction π to X is a immersion.
- (2) Assume that, in addition, $\forall x \in X, t \in \mathbb{R}$ $x + t\vec{v} \notin X$. Then the restriction π to X is an embedding.
- (3) Show that one can always find such \vec{v} if N > 2n or N > 2n+1 respectively.

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a smooth function, and y be its regular value. Is it true that $f^{-1}(U) \cong f^{-1}(y) \times U$ for a sufficiently small neighborhood U of y?

Problem 4. Let P_3 be the space of monic cubic polynomials of degree 3, and let $\Sigma = \{(p,t)|p \in P_3, t \in \mathbb{R}, p(t) = 0\} \subset P_3 \times \mathbb{R} \cong \mathbb{R}^4$. Is Σ a submanifold of \mathbb{R}^4 ? Let $\pi : \Sigma \to P_3$ be the projection. Find the critical values of π .

Date: December 1, 2014.