MANIFOLDS: FALL 2014 EXERCISE 5

DMITRY NOVIKOV

ABSTRACT. Sard theorem

Problem 1. Does there exists a smooth function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{-1}(a)$ is uncountable for all $a \in \mathbb{R}$?

Problem 2. Let $\Sigma = \{(p, v) | p \in \mathbb{R}P^1, v \in p\}$, where $\mathbb{R}P^1$ is the set of lines in \mathbb{R}^2 passing through the origin.

- (1) Show that Σ with its natural structure of smooth manifold is diffeomorphic to a Mobius band.
- (2) Give a formula (in suitable charts) of the blow-up mapping $\pi:(p,v)\to v$. Is it a submersion? Find its singular locus.
- (3) Write an equation of $\pi^{-1}(\{y^2 = x^3\})$ in a natural chart.

Problem 3. 1.7.5. Show that the set of critical points of a smooth function $f: \mathbb{R} \to \mathbb{R}$ can be an arbitrary closed subset of \mathbb{R} .

Problem 4. Show that any smooth map $f: \mathbb{S}^l \to \mathbb{S}^k$, k > l, can be extended to a continuous mapping $F: B^{l+1} \to \mathbb{S}^k$, where B^{l+1} is a standard (l+1)-dimensional ball, \mathbb{S}^l is its boundary and $F|_{\mathbb{S}^l} = f$. In particular, any smooth loop in \mathbb{S}^k , k > 1, is homotopic to zero.

Date: December 1, 2014.