MANIFOLDS: FALL 2014 EXERCISE 7

DMITRY NOVIKOV

Problem 1. 2.1.10, 2.1.11

Remark 1. Here $\vec{n}(z)$ should denote a tangent vector pointing inside, i.e. tangent to a curve $\gamma:[0,\epsilon)\to X$, $\gamma(0)=z$ and not tangent to ∂X . To define the normal vector one would need a scalar product on T_zX , which can be e.g. inherited from an embedding of X into \mathbb{R}^n .

Problem 2. 2.2.1, 2.2.6, 2.2.7,

Problem 3. Let $f: B^n \to B^n$ be a smooth mapping.

- Assume that the restriction $f|_{\mathbb{S}^{n-1}}$ is identity. Show that f is onto.
- In particular, if v(x) is a vector field on \mathbb{R}^n such that v(x) = x for $x \in \mathbb{S}^{n-1}$, then v has a singular point inside B^n .
- Assume that the restriction $f|_{\mathbb{S}^{n-1}}$ maps \mathbb{S}^{n-1} into \mathbb{S}^{n-1} and has no fixed points . Then f is onto.

Date: December 17, 2014.