MANIFOLDS: FALL 2014 EXERCISE 7 ## DMITRY NOVIKOV **Problem 1.** 2.1.10, 2.1.11 **Remark 1.** Here $\vec{n}(z)$ should denote a tangent vector pointing inside, i.e. tangent to a curve $\gamma:[0,\epsilon)\to X$, $\gamma(0)=z$ and not tangent to ∂X . To define the normal vector one would need a scalar product on T_zX , which can be e.g. inherited from an embedding of X into \mathbb{R}^n . **Problem 2.** 2.2.1, 2.2.6, 2.2.7, **Problem 3.** Let $f: B^n \to B^n$ be a smooth mapping. - Assume that the restriction $f|_{\mathbb{S}^{n-1}}$ is identity. Show that f is onto. - In particular, if v(x) is a vector field on \mathbb{R}^n such that v(x) = x for $x \in \mathbb{S}^{n-1}$, then v has a singular point inside B^n . - Assume that the restriction $f|_{\mathbb{S}^{n-1}}$ maps \mathbb{S}^{n-1} into \mathbb{S}^{n-1} and has no fixed points . Then f is onto. Date: December 17, 2014.