MANIFOLDS: FALL 2014 EXERCISE 9

DMITRY NOVIKOV

 $\ensuremath{\mathsf{ABSTRACT}}.$ 2.3 Guillemin and Pollack, Thom's transversality theorems from Golubitsky and Guillemin

Problem 1. 2.3.3, 2.3.4, 2.3.11, 2.3.20

Problem 2. Describe the normal bundle $N(\mathbb{R}P^1, \mathbb{R}P^2)$.

Problem 3. Show that a generic smooth map $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a local diffeomorphism at a generic point, and the points where the Jacobian degenerates form a union of smooth curves. Draw these lines for $(x,t) \to (x^3 - tx,t)$. Hint: Let $\Sigma \subset J^1(\mathbb{R}^2,\mathbb{R}^2)$ be the set of all 1-jets with degenerate Jacobian. Locally it is defined by $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$, i.e. of codimension 1. The set $\Sigma' = \Sigma \cap \{\nabla \det = 0\} = \{a = b = c = d = 0\}$ of singular points of Σ is a submanifold of codimension 4. Apply Thom transversality theorem first to Σ' and then to the submanifold $\Sigma \setminus \Sigma'$.

Date: December 30, 2014.