MANIFOLDS: SPRING 2015 EXERCISE 1

DMITRY NOVIKOV

Problem 1. In Warner's book submanifolds are defined differently: a submanifold of N is a pair (M, ϕ) , where M is a manifold and $\phi : M \to N$ is an immersion, and not an embedding. Let us call such pairs "immersed submanifold".

- (1) Assume $\gamma : (a, b) \to N$ is a curve such that $\gamma ((a, b)) \subset \phi(M)$ (where (M, ϕ) is an immersed submanifold). Show that not necessarily $\dot{\gamma}(t) \in T_{\gamma(t)}\phi(M)$ (Hint: first, define $T_{\gamma(t)}\phi(M)$).
- (2) Show that an integral curve of a vector field is always an immersed submanifold, but could be not a submanifold,

Problem 2. Show that any smooth vector field on a compact manifold is complete.

Problem 3. Let $\phi : M \to N$ be a smooth mapping, and let X be a smooth vector field on on M. A smooth vector field Y on N is called "related to X if $d\phi(X(p)) = Y(\phi(p))$ for all $p \in M$.

- (1) Assume $d\phi(X(p)) = d\phi(X(q))$ whenever $\phi(p) = \phi(q)$. Is there a smooth vector field Y on N related to X?
- (2) Prove that if $X_{1,2}$ are two smooth vector fields on M, and the vector fields $Y_{1,2}$ are related to $X_{1,2}$ correspondingly, then $[X_1, X_2]$ is related to $[Y_1, Y_2]$

Problem 4. Let v_i be smooth vector fields on M_i , i = 1, 2. They define two vector fields $\tilde{v}_1 = (v_1, 0)$ and $\tilde{v}_2 = (0, v_2)$ on $M_1 \times M_2$. Show that $[\tilde{v}_1, \tilde{v}_2] = 0$.

Problem 5. Let $v_{1,2}$ be two linear vector fields on \mathbb{R}^d , i.e. $v_i = A_i x$ for some matrices $A_i \in \mathcal{M}_{n \times n}(\mathbb{R})$, i = 1, 2.

- (1) Compute the flow X_s of v_1 . Show that v_1 is complete.
- (2) Compute $[v_1, v_2]$.
- (3) Give an example of $A_{1,2}$ such that the minimal involutive distribution D such that $v_i \in D$ has dimension d.

Problem 6. Assume v is a smooth vector field on \mathbb{R}^d , and $||v(x)|| \leq K||x||$. Show that v is complete.

Date: March 19, 2015.