MANIFOLDS: SPRING 2015 EXERCISE 2

DMITRY NOVIKOV

Problem 1. A Godbillon-Vey sequence for a one-form ω_0 is a sequence of one-forms $\omega_1, ..., \omega_n, ...$ such that

$$d\omega_n = \omega_0 \wedge \omega_{n+1} + \sum_{i=1}^{n+1} \binom{n}{k} \omega_i \wedge \omega_{n+1-i}. \tag{1}$$

- (1) If ω_0 has a Godbillon-Vey sequence then it is integrable, i.e. $\omega_0 \wedge d\omega_0 = 0$,
- (2) If ω_0 is integrable, then for any vector field X such that $\omega_0(X) \equiv 1$ the sequence $\omega_{i+1} = L_X \omega_i$ is a Godbillon-Vey sequence for ω_0 ,
- (3) Assume $\omega_1, ..., \omega_n, ...$ is a Godbillon-Vey sequence for a one-form ω_0 . Write a Godbillon-Vey sequence for a one-form $f\omega_0$, where f is some smooth function.
- (4) Assume that G is a transcendental over K solution of the PDE

$$dG + \frac{G^n}{n!}\omega_n + \dots + \omega_0 = 0, \tag{2}$$

where all ω_i have coefficients in some field K. Show that $\omega_1, ..., \omega_n, 0, 0, ...$ is a Godbillon-Vey sequence for the ω_0 .

(5) Let $\omega_0 = xdy + \pi ydx$. Find a Godbillon-Vey sequence of forms with rational coefficients for ω_0 of length 2 (i.e. $0 = \omega_2 = ...$).

Further reading: An extension of a differentiable field K is called Liouvillian if it is obtained by a finite sequence of extensions $K \subset K(G)$ with G either algebraic or a transcendent solution of $dG = G\gamma_1 + \gamma_0$, with γ_i being one-forms with coefficients in K.

A nice paper "Suites de GodbillonVey et intégrales premières" by Guy Casale, http://www.sciencedirect.com/science/article/pii/S1631073X02026195# gives, among other, a short proof of the Singer theorem: ω_0 with coefficients in K has a Liouvillian first integral H (i.e. $dH = M\omega_0$) if and only if it admits a Godbillon-Vey sequence for ω_0 of length 2 of forms with coefficients in K (and then dM has coefficients in K). This is a typical Galois theory type result: if an equation has a solution after some sequence of base field extension, then it has it after just several extension (in this case two).

- **Problem 2.** (1) A form ω is called decomposable if $\omega = \omega_1 \wedge ... \wedge \omega_k$ for some one-forms ω_i . IS it true that any k-form is decomposable?
 - (2) Is it true that $\omega \wedge \omega = 0$ for any form ω ?

Problem 3. Let L be a d-dimensional linear space with a non-degenerate scalar product (,) and orientation.

Date: April 27, 2015.

- (1) Construct a scalar product on Λ_*L . In particular, there is an isomorphism $*_k: \Lambda_k L \to \Lambda_{d-k} L.$
- (2) Compute $*_k*_{d-k}$. Prove that $(v, w) = *(w \wedge *v) = *(v \wedge *w)$.

We denote by $*^k: \Lambda^k L \to \Lambda^{d-k} L$ the isomorphism dual to $*_{d-k}$ and by $\beta_k: \Lambda^k L \to \Lambda^{d-k} L$ $\Lambda_k L$ another isomorphism (which one?)

Problem 4. Here we consider the forms in \mathbb{R}^3 with non-constant coefficients (i.e. $E^*(\mathbb{R}^3)$).

- (1) Prove that any 2-form ω in \mathbb{R}^3 can be represented as $i_v\Omega$, where Ω $dx \wedge dy \wedge dz$ is the volume form. Denote this isomorphism as $i_{\Omega} : \mathfrak{X}(\mathbb{R}^3) \to \mathbb{R}^3$ $E^1(\mathbb{R}^3)$. What is the relation between $i_{\Omega}^{-1}(\omega)$ and $\beta_2\omega$?
- (2) Write in coordinates $i_{\Omega}^{-1}(d(\beta_1^{-1}(v)))$. And $\frac{d(i_{\Omega}^{-1}(v))}{\Omega}$. (3) What is $i_{\Omega}^{-1}(\beta_1(u) \wedge \beta_1(v))$.

Problem 5. Let $M \subset L$ be a linear subspace of dimension k, dim L = d. Then $\Lambda_k M \subset \Lambda_k L$ is a line and therefore we have the Plcker embedding $\psi : Gr(k,L) \to \mathbb{R}$ $P(\Lambda_k L)$. Show that it is a smooth immersion, but not submersion. Show that it is embedding.